Autors: Georgiev, Z. D., Uzunov, I. M., Todorov, T. G. Title: Analysis and synthesis of oscillator systems described by a perturbed double well Duffing equation Keywords: Limit cycles, duffing equation,Melnikov function, Jacobi ell References Issue
|
Цитирания (Citation/s):
1. Chen, Jiayun, Fuhong Min, Qiusen Jin, and Biaomin Ye. "Coexistence, bifurcation and chaos of a periodically forced duffing system with absolute nonlinearity." The European Physical Journal Special Topics 228, no. 6 (2019): 1405-1419. - 2019 - в издания, индексирани в Scopus или Web of Science
2. Min, Fuhong, and Jiayun Chen. "The Coexisting Behaviors on the Boundary of a Duffing-like Oscillator with Signum Nonlinearity and Its FPGA-Based Implementation." International Journal of Bifurcation and Chaos 30, no. 06 (2020): 2050085. - 2020 - в издания, индексирани в Scopus или Web of Science
3. Ghaleb, A. F., M. S. Abou-Dina, G. M. Moatimid, and M. H. Zekry. "Analytic approximate solutions of the cubic-quintic Duffing-Van der Pol equation with two-external periodic forcing terms: Stability analysis." Mathematics and Computers in Simulation (2020). - 2020 - в издания, индексирани в Scopus или Web of Science
4. Eze, Everestus Obinwanne, R. N. Ujumadu, G. S. Ezugorie, and E. Obasi Uchenna. "Existence of Homoclinic Orbits and Conditions for the Onset of Chaotic Behavior in a Perturbed Double-Well Oscillator." International Journal of Mathematical Analysis 14, no. 7 (2020): 329-343. - 2020 - в издания, индексирани в Scopus или Web of Science
5. Wojciech Wawrzyński, “Duffing-type oscillator under harmonic excitation with a variable value of excitation amplitude and time-dependent external disturbances”, February 2021, Scientific Reports 11(1), DOI: 10.1038/s41598-021-82652-z. - 2021 - в издания, индексирани в Scopus или Web of Science
6. Ghaleb, A. F., M. S. Abou-Dina, G. M. Moatimid, and M. H. Zekry. "Analytic approximate solutions of the cubic–quintic Duffing–van der Pol equation with two-external periodic forcing terms: Stability analysis." Mathematics and Computers in Simulation 180 (2021): 129-151. - 2021 - в издания, индексирани в Scopus или Web of Science
7. L. A. Klimina, Method for Generating Asynchronous Self-Sustained Oscillations of a Mechanical System with Two Degrees of Freedom, Mechanics of Solids 56(7):1167-1180, September 2021. DOI: 10.3103/S0025654421070141. - 2021 - в издания, индексирани в Scopus или Web of Science
8. Li, Shuangbao, and Ran Sun. "Melnikov analysis of subharmonic motions for a class of bistable vibro-impact oscillators." Nonlinear Dynamics 111, no. 2 (2023): 1047-1069. - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science