Autors: Pleshkova, P. S., Bekiarski, B. A.
Title: Moving Objects Detection and Tracking in Infrared or Thermal Image
Keywords: thermal images; infrared images; real time objects detection;

Abstract: Moving objects detection and tracking in infrared images is an important goal in most of the practical applications of the thermo vision systems. For these thermo vision applications here is proposed to apply a cost function associated with the minimization of a global criterion for simultaneous estimation of the optical flow and detection of the moving objects in infrared images. The optical flow and moving objects detection and tracking in infrared images are modeled with an appropriate neural network. The thermo vision or infrared images, captured from thermo camera, are first partitioned in rectangular blocks. The blocks are described with a number of parameters placed in the corresponding feature vectors. It is proposed to apply as parameters of the blocks the following important in thermal images characteristics: the position, the gray level and the local motion information. It is chosen the classification of the feature vectors by considering the displaced frame difference, ac

References

  1. FLIR Infrared Cameras.
  2. FLIR Application Book. FLIR Company 2010
  3. Coon D. D. and Peters A.G, 2009, Spectral Information coding by Infrared photo receptors, International Journal of Infrared and Multimeter Waves, Volume Volume 7, Number 10, pp. 1571-1583
  4. A. M. Tekalp. Digital video Processing, 1995, Upper Saddle River, London, Prentice Hall
  5. M. J. D. Powell, 2005, The theory of radial basis function approximation in 1990. In Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Functions, Oxford University Press, Oxford
  6. R. Schultz and R. L. Stevenson, 1994, A bayesian approach to image expansion for improved definition, IEEE Transactions on Image Processing, Volume vol. 3, no. 3, pp. pp. 233-241

Issue

, 2012, Portugal, Published by WSEAS Press, ISBN ISSN: 1790-5109 ISBN: 978-1-61804-089-3

Цитирания (Citation/s):
1. Dane Lesley Brown, Daniel Schormann. Poacher Detection and Wildlife Counting System, September 2019. Conference: SATNAC 2019: The Changing Face of Telcos in a Digital World at: Zimbali Lodge, Durban, South Africa. Project: Computer Vision and Machine Learning Research Group - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Amanda Berg. Learning to Analyze what is Beyond the Visible Spectrum (Book). December 2019. DOI: 10.3384/diss.diva-161077, ISBN: 9789179299811, License CC BY-NC 4.0 - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. Jassim Mohammed Jassim. IMPROVING THE PERFORMANCE OF TURBULENT FREE SPACE OPTICAL LINK BY USING A FOURIER FILTER. November 2019, Conference: 14TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, ELECTROMAGNETICS AND MEDICAL APPLICATIONS (CEMA’19) At: FACULTY OF TELECOMMUNICATIONS TECHNICAL UNIVERSITY OF SOFIA, BULGARIA - 2020 - в издания, индексирани в Scopus или Web of Science
4. Amanda Berg, Jorgen Ahlberg. Semi-Automatic Annotation of Objects in Visual-Thermal Video. October 2019. DOI: 10.1109/ICCVW.2019.00277. Conference: 2019 IEEE/CVF International Conference on Computer Vision Workshop - 2020 - в издания, индексирани в Scopus или Web of Science
5. Usha Mitta, Sonal Srivastava, Priyanka Chawla. Object Detection and Classification from Thermal Images Using Region based Convolutional Neural Network, Jul 2019, July 2019, Journal of Computer Science 15(7):961-971, DOI:10.3844/jcssp.2019.961.971 - 2019 - в издания, индексирани в Scopus или Web of Science
6. • Chiman Kwan Bryan Chou, Jonathan Yang, Akshay Rangamani, Ralph Etienne-Cummings. Target tracking and classification using compressive sensing camera for SWIR videos. June 2019, Signal Image and Video Processing, DOI: 10.1007/s11760-019-01506-4, Jun 2019 - 2019 - в издания, индексирани в Scopus или Web of Science
7. António J. R. Neves, Ricardo Ribeiro. Algorithms for Face Detection on Infrared Thermal Images. Jan 2018 - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
8. Nikolaos Doulamis, Panagiotis Agrafiotis, George Athanasiou, Angelos Amditis. Human Object Detection using Very Low Resolution Thermal Cameras for Urban Search and Rescue. June 2017, DOI: 10.1145/3056540.3076201, June 2017, ACM International Conference Proceeding Series, Part F128530, pp. 311-318 - 2017 - в издания, индексирани в Scopus или Web of Science
9. Sanoj Kumar, Sanjeev Kumar, Balasubramanian Ramam. A variational approach for optical flow estimation in infra-red or thermal images. December 2013, DOI: 10.1109/ICIIP.2013.6707555, 2013 IEEE 2nd International Conference on Image Information Processing, IEEE ICIIP 2013.6707555, pp. 56-61 - 2013 - в издания, индексирани в Scopus или Web of Science
10. Vladimir A. Knyaz, Oleg Vygolov, Yury Vizilter, Niklas Conen. Deep Learning of Convolutional Auto-Encoder for Image Matching and 3D Object Reconstruction in the Infrared Range. October 2017, DOI: 10.1109/ICCVW.2017.252, Conference: 2017 IEEE International Conference on Computer Vision Workshop (ICCVW) Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017 2018-January, pp. 2155-2164 - 2018 - в издания, индексирани в Scopus или Web of Science
11. Rami Alkhatib, Mohamad O. Diab, Omar Itani, Camelia Chamaa, Maher Sabbah. Usage of VGRF in Biometrics: Application on Healthy and Parkinson Gaits. April 2018, DOI: 10.1109/CAIS.2018.8442029, Conference: 2018 1st International Conference on Computer Applications & Information Security (ICCAIS) 1st International Conference on Computer Applications and Information Security, ICCAIS 2018, 8442029 - 2018 - в издания, индексирани в Scopus или Web of Science
12. Umi Chasanah, Grafika Jati, Wisnu Jatmiko. Enhanced Bayesian Tracker for Various Condition using Thermal Infrared Imagery. 2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS), DOI: 10.1109/MHS.2018.8887042, December 2018 - 2018 - в издания, индексирани в Scopus или Web of Science
13. Chiman Kwan. Object Tracking and Classification in Videos Using Compressive Measurements. Conference: International Conference on Vision, Image and Signal Processing, At: Vancouver, CanadaAugust 2019 - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
14. Abdul Sajeed MohammedAli AmamouFollivi kloutse ayevideSousso KelouwaniNadjet Zioui View.The Perception System of Intelligent Ground Vehicles in All Weather Conditions: A Systematic Literature Review.November 2020Sensors 20(22) Follow journal DOI: 10.3390/s20226532 LicenseCC BY 4.0 - 2020 - в издания, индексирани в Scopus или Web of Science
15. Fanjun BuChien-Ming Huang.Object Permanence Through Audio-Visual Representations - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

Вид: публикация в международен форум, публикация в реферирано издание