Autors: Gancheva, V. S. Title: A big data management approach for computer aided breast cancer diagnostic system supporting precision medicine (Open Access) Keywords: - Abstract: Major challenge in the analysis of clinical data is to propose an integrated and modern access to the progressively increasing amounts of data in multiple formats, and efficient approaches for their management and processing. An approach to management of large amount of heterogeneous data sets from various data sources for a breast cancer diagnostic system is presented in this paper. Big genomic data architecture consists of data sources, storage, integration and preprocessing, real data stream, stream processing, analytical data store, analysis and reporting. Activities at data management for breast cancer diagnostic system are explained. Conceptual database architecture for storing data sets of several types in order to support breast cancer prediction is designed. The breast cancer database comprises of information related to breast cancer genes and functions-id, name, type, organism, function, and proteins coded, description, link for retrieving sequence.. References Issue
Copyright AIP Conference Proceedings |
Цитирания (Citation/s):
1. S. Vetova, Big data workflow platforms for science, AIP Conference Proceedings 2333, 030008 (2021); https://doi.org/10.1063/5.0043625 - 2021 - в издания, индексирани в Scopus или Web of Science
2. S. Vetova, Comparative analysis on CNN and wavelet features based technology for medical image classification, AIP Conference Proceedings 2333, 030003 (2021); https://doi.org/10.1063/5.0043624 - 2021 - в издания, индексирани в Scopus или Web of Science
3. S. Vetova, Wavelet Analysis for Biomedical Data, AIP Conference Proceedings 2505, 020011 (2022); https://doi.org/10.1063/5.0100690 - 2022 - в издания, индексирани в Scopus или Web of Science
4. S. Vetova, Biomedical Image Classification Algorithms Evaluation, AIP Conference Proceedings 2505, 020009 (2022); https://doi.org/10.1063/5.0100685 - 2022 - в издания, индексирани в Scopus или Web of Science
5. Jayanthi, Naga Guru Rahul, and R. Nanmaran. "Design and implementation of ANN based multimodal biometric authentication system with improved accuracy in comparison with conventional biometric authentication system." In American Institute of Physics Conference Series, vol. 2816, no. 1, p. 030005. 2024. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: пленарен доклад в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus