Autors: Punov, P. B., Evtimov, T., Chiriac, R., Clenci, A., Danel, Q., Descombes, G.
Title: Progress in high performances, low emissions, and exergy recovery in internal combustion engines
Keywords: Internal combustion engine, Energetic performances, Pollutant emissions, Polygeneration

Abstract: This article first gives a brief review of heat engines designed for terrestrial transportation since the 1900s. We then outline the main developments in the state of the art and knowledge about internal combustion engines, focusing on the increasingly stringent pollution constraints imposed since the 1990s. The general concept of high-energy performance machines is analyzed from the energy and public health point of view and illustrated with typical examples of clean energy production and zero emissions. The article concludes with some perspectives for the emergence of an economic model that could be applied to land-based transport systems in the framework of energy transition by 2030.

References

  1. Abedin, M.J., Masjuki, H.H., Kalam, M.A., Sanjid, A., Rahman, S.M.A., Masum, B.M.: Energy balance of internal combustion engines using alternative fuels. Renew. Sust. Energ. Rev. 26, 20–33 (2013)
  2. Abusoglu, A., Kanoglu, M.: Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: part 2, application. Appl. Therm. Eng. 29, 242–249 (2009)
  3. Benelmir, R., Feidt, M.: Energy cogeneration systems and energy management strategy. Energy Convers. Manag. 39, 1791–1802 (1998)
  4. Bert, J.: Contribution à l’étude de la vaporisation des rejets thermiques : étude et optimisation de moteurs Stirling. Doctoral thesis. Univ. de Bourgogne (2013)
  5. Bianchi, M., De Pascale, A.: Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energ. 88(5), 1500–1509 (2011).
  6. Bonnet, S.: Moteurs thermiques à apport de chaleur externe : étude d’un moteur Stirling et d’un moteur Ericsson. Doctoral thesis (2005)
  7. Carnot, S.: Réflexions sur la puissance motrice du feu, Fac similé du mémoire de Carnot, Bibliothèque du Cnam (1824)
  8. Chiriac, R.: Scénarios de décarbonisation des carburants dans les transports. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  9. Chiriac, R., Apostolescu, N.: Emissions of a diesel engine using B20 and effects of hydrogen addition. Int. J. Hydrogen Energy (cotata ISI). 38(30), 13453–13462. (2013).
  10. Chiriac, R., Descombes, G.: Fuel consumption and pollutant emissions reduction for diesel engines by recovery of wasted energy. Environ. Eng. Manag. J. 9(10), 1335–1340 (2010)
  11. Chiriac, R., Descombes, G., Podevin, P.: “Dispositif d’alimentation d’un moteur à combustion interne en gaz enrichi en dihydrogène et en dioxygène” brevet INPI nr. 2 964 152 Paris, 24 Aug 2012, Bulletin 12/34 (2012)
  12. Clenci, A.: Cycles normatifs de mesure et certification dynamique des émissions de polluants. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  13. Clenci, A., Biziiac, A., Podevin, P., Descombes, G., Deligant, M., Niculescu, R.: Idle operation with low intake valve lift in a port fuel injected engine. Energies. 6(6), 2874–2891. doi: https://doi.org/10.3390/en6062874, Published: Jun 2013
  14. Clenci, A., Iorga, V., Deligant, M., Podevin, P., Descombes, G., Niculescu, R.: A CFD study on the effects of operating an engine with low intake valve lift at idle corresponding speed. Energy. 71, 202–217 (2014)
  15. Dab, W.: Impact sanitaire de la pollution atmosphérique et du réchauffement climatique par les transports (2015)
  16. Danel, Q., Perilhon, C., Lacour, S., Punov, P., Danlos, A.: Waste heat recovery applied to a tractor engine. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15, Beyrouth (2015)
  17. Danlos, A.: Polluants et dispersion dans l’atmosphère. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  18. Delacourt, E.: Motorisation diesel, lois d’injection et de combustion, Mooc du Cnam, Défis énergétiques et risques sanitaires dans les transports. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  19. Descombes, G., Boudigues, S.: Modelling of waste heat recovery for combined heat and power applications. Appl. Therm. Eng. 29(13), 2610–2616 (2009)
  20. Descombes, G., Maroteaux, F., Feidt, M.: Study of the interaction between energy and heat exchanges applied to IC engines. J. Appl. Therm. Eng. 23(16), 2061–2078 (2003)
  21. Diesel, R.: Le moteur thermique système diesel, Congrès international de mécanique appliquée, Exposition universelle, 19–25 juillet 1900, pp. 487–508, Conservatoire nationalm des arts et métiers, Paris (1900)
  22. Diesel, R.: Les applications du moteur Diesel à la locomotion et à la navigation, La Technique moderne (juin 1912)
  23. Dolz, V., Novella, R., García, A., Sánchez, J.: HD diesel engine equipped with a bottoming rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy. Appl. Therm. Eng. 36, 269–278 (2012)
  24. Durget, M.: Motorisation à allumage commandé et électrification. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  25. Gagnepain, L.: Investissements d’avenir, Note stratégique pour la préparation de l’Appel à Manifestation d’Intérêt, Chaîne de traction et auxiliaires des véhicules à motorisation thermique, Note ADEME, 21 Janvier 2011.
  26. Giraud, O.: Contribution à l”étude de l’isolation thermique d’un moteur suralimenté à allumage par compression, Thèse de doctorat de l’Upmc (1984)
  27. Glavatskaya, Y., Podevin, P., Lemort, V., Shonda, O., Descombes, G.: Reciprocating expander for an exhaust heat recovery Rankine cycle for a passenger car application. Energies. 5, 1751–1765 (2012)
  28. Guilain, S.: Motorisation diesel, dilemme des émissions de NOx et de CO2. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  29. Haddad, C., Périlhon, C., Danlos, A., François, M.-X., Descombes, G.: Some efficient solutions to recover low and medium waste heat: competitiveness of the thermoacoustic technology. Energy Procedia. 50, 1056–1069 (2014).
  30. Jouguet, E.: In: Douin et fils, O. (ed.) Théorie des moteurs thermiques (1909)
  31. Kanoglu, M., Dincer, I.: Performance assessment of cogeneration plants. Energy Convers. Manag. 50, 76–81 (2009)
  32. LeBlanc, S.: Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. (2014).
  33. Letombe, L.: In: Baillère (ed.) Les moteurs, de l’action de paroi dans les moteurs à combustion interne, Chapitre 9, pp. 110–127, Paris (1909)
  34. Liang, X., Wang, X., Shu, G., Wei, H., Tian, H., Wang, X.: A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. Int. J. Energy Res. 39, 453–471 (2014)
  35. Marly, O. Transport diesel industriel, réglementations internationales. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about (2015)
  36. Milkov N., Punov, P. B, Evtimov T., Descombes G., Podevin P., 2014,Scientific Conference BulTrans-2014: Energy and exergy analysis of an automotive direct injection diesel engine, Sozopol, Bulgaria, pp. 149-154
  37. Morin, C.: Combustion dans les moteurs à combustion interne. https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about 2015
  38. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., 2013,BulTrans-2013: Possibilities of waste heat recovery on tractor engines, Sozopol, Bulgaria, pp. 7-15
  39. Rakopoulos, C.D., Andritsakis, E.C., Huontalas, D.T.: the influence of the exhaust system unsteady gas flow and insulation on the performance of a turbocharged diesel engine. Heat Recov. Syst. Chp. 15(1), 51–72 (1995)
  40. Saidur, R., Rezaei, M., Muzammil, W.K., Hassan, M.H., Paria, S., Hasanuzzaman, M.: Technologies to recover exhaust heat from internal combustion engines. Renew. Sust. Energ. Rev. 16, 5649–5659 (2012)
  41. Serrano, J.R., Dolz, V., Novella, R., García, A.: HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: evaluation of alternative solutions. Appl. Therm. Eng. 36, 279–287 (2012)
  42. Sprouse, C., Depcik, C.: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 51, 711–722 (2013)
  43. Stouffs P.: Les moteurs à apport de chaleur externe. 10ème Cycle de Conférences CNAM/SIA, Mars (2009)
  44. Thurston, R.H.: In: Decoopman (ed.) Histoire de la machine à vapeur (1882)
  45. Touré, A.: Etude théorique et expérimentale d’un moteur Ericsson à cycle de Joule pour conversion thermodynamique d’énergie solaire ou pour micro-cogénération. Doctoral thesis, Univ. de Pau et des Pays de l’Adour (2010)
  46. Venkatesan, M., Moorthi, N., Vinayaga, S., Arul Franco, P., Manivannan, A., Karthikeyan, R.: Hydrous Methanol Fuelled HCCI Engine Using Ignition Improver CAI Method - ANN Approach. Mechanics and Mechanical Engineering. 19(1), 31–49 (2015)
  47. Wang, T., Zhang, Y., Peng, Z., Shu, G.: A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sust. Energ. Rev. 15, 2862–2871 (2011)
  48. Witz, A.: In: Michel, A. (ed.) Traité théorique et pratique des moteurs à gaz, à essence et à pétrole (1923)

Issue

Green Energy and Technology, pp. 995-1016, 2018, Germany, Springer Verlag, DOI 10.1007/978-3-319-62572-0_64

Copyright Springer International Publishing AG

Цитирания (Citation/s):
1. Zhukov, V., Melnik, O., Logunov, N., Chernyi, S., Regulation and control in cooling systems of internal combustion engines, (2019), E3S Web of Conferences, 135, art. no. 02015 - 2019 - в издания, индексирани в Scopus или Web of Science
2. Concli, F., Tooth root bending strength of gears: Dimensional effect for small gears having a module below 5 mm (2021) Applied Sciences (Switzerland), 11 (5), art. no. 2416 - 2021 - в издания, индексирани в Scopus или Web of Science
3. Concli, F., Fraccaroli, L., Bending fatigue strength of small size 2 mm module gears (2021) WIT Transactions on Engineering Sciences, 133, pp. 39-46 - 2021 - в издания, индексирани в Scopus или Web of Science

Вид: книга/глава(и) от книга, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus