Autors: Christoff, N. V., Jorda, L., Viseur, S., Bouley, S., Manolova, A. H., Mari, J.-L.
Title: Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling
Keywords: Mars, 3D mesh, Automated crater detection, Curvature analysi

Abstract: One of the challenges of planetary science is the age determination of geological units on the surface of the different planetary bodies in the solar system. This serves to establish a chronology of the geological events occurring on these different bodies, hence to understand their formation and evolution processes. An approach for dating planetary surfaces relies on the analysis of the impact crater densities with size. Approaches have been proposed to automatically detect impact craters in order to facilitate the dating process. They rely on color values from images or elevation values from Digital Elevation Models (DEM). In this article, we propose a new approach for crater detection, more specifically using their rims. The craters can be characterized by a round shape that can be used as a feature. The developed method is based on an analysis of the DEM geometry, represented as a 3D mesh, followed by curvature analysis. The classification process is done with one layer ..

References

    Issue

    Earth, Moon, and Planets, vol. 124, issue 3, pp. 51-72, 2020, Netherlands, Springer Nature, DOI 10.1007/s11038-020-09535-7

    Цитирания (Citation/s):
    1. Mutaqin, B. W., Marfai, M. A., Hadmoko, D. S., Wijayanti, H., Lavigne, F., & Faral, A. (2021). Comparison of DEMs Spatial Resolution for Geomorphological Study in a Small Volcanic Island of Tidore, North Maluku, Indonesia. Journal of Hunan University Natural Sciences, 48(6). - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Wu, P., Mu, R., Deng, Y., Robust Crater Detection Algorithm Based on Maximum Entropy Threshold Segmentation, International Journal of Aerospace Engineering, vol. 2022, Article ID 4872248, 15 pages, 2022. https://doi.org/10.1155/2022/4872248 - 2022 - в издания, индексирани в Scopus или Web of Science
    3. Nagle-McNaughton, T. P., Scuderi, L. A., & Erickson, N. (2022). Squeezing Data from a Rock: Machine Learning for Martian Science. Geosciences, 12(6), 248. - 2022 - в издания, индексирани в Scopus или Web of Science
    4. Kruse, C., Wittich, D., Rottensteiner, F., & Heipke, C. (2022). Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes. ISPRS Open Journal of Photogrammetry and Remote Sensing, 100017., DOI: https://doi.org/10.1016/j.ophoto.2022.100017 - 2022 - в издания, индексирани в Scopus или Web of Science
    5. La Grassa, R., Cremonese, G., Gallo, I., Re, C., & Martellato, E. (2023). YOLOLens: A Deep Learning Model Based on Super-Resolution to Enhance the Crater Detection of the Planetary Surfaces. Remote Sensing, 15(5), 1171. DOI: https://doi.org/10.3390/rs15051171 - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science