Autors: Yordanova, S. T., Slavov M., Prokopiev G.
Title: Disturbance Compensation in Fuzzy Logic Control of Level in Carbonisation Column for Soda Production
Keywords: Disturbance compensation, Level control, Mamdani fuzzy logic

Abstract: The intelligent approaches emerge as leading techniques in providing of stable and high performance control of industrial plants with nonlinearity, model uncertainty, variables coupling and disturbances. In the present research a novel approach for the design of a nonlinear model-free fuzzy logic controller (FLC) with two inputs – the system error and the main measurable disturbance and a rule base for disturbance compensation is suggested. It is based on expert knowledge and off-line parameter optimisation via genetic algorithms (GA). The approach is applied for the development of a FLC for the control of the level of ammonia brine solution in a carbonisation column with compensation of the changes in the inflow pressure. The control algorithm is implemented in a general purpose industrial programmable logic controller (PLC) in ”Solvay Sodi” SA – Devnya, Bulgaria. The assessed from real time control FLC system with disturbance compensation outperforms the FLC with a the error input.

References

    Issue

    WSEAS Trans. on Systems and Control, vol. 15, issue 8, pp. 64-72, 2020, Greece, , https://doi.org/10.37394/23203.2020.15.8

    Цитирания (Citation/s):
    1. Michael Gr. Voskoglou (2020) Applications of Fuzzy Linear Programming to Business Problems 19,pp.343-348 DOI: 10.37394/23206.2020.19.34, E-ISSN: 2224-2880 - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Kaipbergenov B.T., Fayzullaev B.A., Elmuratov M.K. (2021) Modeling of the Technological Process of Ammonization of Soda Production Under Conditions of Changing Initial Data. In: Aliev R.A., Yusupbekov N.R., Kacprzyk J., Pedrycz W., Sadikoglu F.M. (eds) 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020), Tashkent, Uzbekistan, 26-28 Nov.2020,WCIS 2020. Advances in Intelligent Systems and Computing, vol 1323 pp. 309-315 . Springer, Cham. https://doi.org/10.1007/978-3-030-68004-6_40, Print/Online ISBN: 978-3-030-68003-9/978-3-030-68004-6 - 2021 - в издания, индексирани в Scopus или Web of Science
    3. Azzouzi, S., El-Mekkaoui, J., Hjouji, A., Khalfi, A.E.L. (2021) A generalization of Possibilistic Fuzzy C-Means Method for Statistical Clustering of Data. Int. Journal of Circuits, Systems and Signal Processing, 15,191, pp. 1766-1780 - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Chinh, C. D., Thang, L. T. and Vu, N. V. (2023). Disturbance estimation for the hydraulic drive system based on the state observer and neural network. The University of Danang - Journal of Science and Technology, 21(12.1), pp. 17–21. ISSN: 1859-1531, https://doi.org/10.31130/ud-jst.2023.262E, https://jst-ud.vn/jst-ud/article/view/8551/6073 - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор