Autors: Mateev, V. M., Marinova, I. Y., Kartunov, Z.
Title: Gas leakage source detection for Li-Ion batteries by distributed sensor array Open Access
Keywords: Catalytic gas sensors, CO gas sensor, Distributed sensor arr

Abstract: Lithium-based batteries operation is related to some safety risks of dangerous flaming, integrity destruction, or even explosion. Gas leakage is an early and reliable indicator for such irreversible malfunctioning of electrical accumulators. Often, accurate gas emission source location sensing is difficult especially in heavy operational conditions, related to temperature changes, vibrations, movements, accelerations, etc. In this paper we propose a gas detection system, with catalytic type sensor array, and a numerical reconstruction method for precise gas emission source location inside the battery pack. The detection system employs a distributed array of CO sensors. Proposed sensor array configurations significantly reduce the number of sensing nodes inside the battery pack and fewer sensors than the protected battery elements are used. This way, data acquisition process by sensor nodes is also simplified. Several array configurations are considered according to their measurement e

References

  1. Mateev, V., Marinova, I., Kartunov, Z., 2019, Automatic system for li-ion battery packs gas leakage detection, Limerick; Ireland, 4-6 December 2018, <Proceedings of the International Conference on Sensing Technology, ICST, 2018-December, art. no. 8603567, pp. 13-16>, IEEE
  2. Dung, L.-R., Li, H.-P., 2018, A voltage-gradient based gas gauge platform for lithium-ion batteries, Chiba; Japan, 13-17 April 2018, <Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018, pp. 789-792>, IEEE
  3. Hannan, M.A., Hoque, M.M., Hussain, A., Yusof, Y., Ker, P.J., 2018, State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations (Open Access), IEEE Access, Volume 6, pp. pp. 19362-19378
  4. Wenger, M., Waller, R., Lorentz, V.R.H., Marz, M., Herold, M., 2014, Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement, USA, 24 February 2014, <IECON Proceedings (Industrial Electronics Conference), art. no. 7049366, pp. 5654-5659>, IEEE
  5. Gong, W., Chen, Y., Kou, L., Kang, R., Yang, Y., 2017, Life prediction of lithium ion batteries for electric vehicles based on gas production behavior model, Shanghai; China, 16-18 August 2017, <Proceedings - 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, 2017-December, pp. 275-280>, IEEE
  6. Burgués, J., Jiménez-Soto, J.M., Marco, S., 2018, Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models, Analytica Chimica Acta, Volume 1013, pp. pp. 13-25
  7. Hutchinson, M., Oh, H., Chen, W.-H., 2017, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors (Open Access), Information Fusion, Volume 36, pp. pp. 130-148
  8. Bilgera, C., Yamamoto, A., Sawano, M., Matsukura, H., Ishida, H., 2018, Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments (Open Access), Sensors (Switzerland), Volume 18(12), pp. art. no. 4484
  9. Burgués, J., Hernandez, V., Lilienthal, A.J., Marco, S., 2018, 3D Gas Distribution with and without Artificial Airflow: An Experimental Study with a Grid of Metal Oxide Semiconductor Gas Sensors, Proceedings, Volume 2, pp. p. 911
  10. Grosch, J., Teuber, E., Jank, M., Lorentz, V., März, M., Frey, L., 2015, Device optimization and application study of low cost printed temperature sensor for mobile and stationary battery based Energy Storage Systems, Oshawa; Canada, 17-19 August 2015, <International Conference on Smart Energy Grid Engineering, SEGE 2015, art. no. 7324599>, IEEE
  11. Ziebert, C., Uhlmann, N., Ouyang, S., Lei, B., Zhao, W., Rohde, M., Seifert, H.J., 2018, Combined battery calorimetry and modelling of Li-ion cells for improved battery and thermal management systems [Лекция, 26 р.], Fort Lauderdale, FL, USA, 26-29 March 2018, <Виж и: 4rd International Conference Automotive Battery Management Systems, Mainz, September 26–28, 2017>, IKEBA
  12. Yang, H.-C., Dung, L.-R., 2007, An accurate lithium-ion battery gas gauge using two-phase STC modeling, Caixanova - Vigo; Spain, 4-7 June 2007, <IEEE International Symposium on Industrial Electronics, art. no. 4374711, pp. 866-871>, IEEE
  13. Nedjalkov, A., Meyer, J., Köhring, M., Doering, A., Angelmahr, M., Dahle, S., Sander, A., (...), Schade, W., 2016, Toxic gas emissions from damaged lithium ion batteries-analysis and safety enhancement solution (Open Access), Batteries, Volume 2(1), pp. art. no. 5
  14. Panasonic.Com, 2013, Electronic Components & Solutions - Panasonic Industrial Devices, 25.06.2019, <https://na.industrial.panasonic.com/>, Дата на последен преглед (Last accessed on): 25.06.2019
  15. Hanway Electronics Ltd, 2017, MQ7 Gas Sensor, Technical Data, Hanway Electronics Ltd, <http://www.hwsensor.com>, Дата на последен преглед (Last accessed on): 25.06.2020
  16. Jelicic, V., Oletic, D., Sever, T., Bilas, V., 2015, Evaluation of MOX gas sensor transient response for low-power operation, Zadar; Croatia, 13-15 April 2015, <SAS 2015 - 2015 IEEE Sensors Applications Symposium, Proceedings, art. no. 7133584>, IEEE
  17. Tesla Blatná, A.S., 2016, Electrochemical Sensor Platform BE3, Tesla Blatná, A.S., <http://www.tesla-blatna.cz/>, Дата на последен преглед (Last accessed on): 25.06.2019
  18. Rossi, M., Brunelli, D., 2013, Analyzing the transient response of MOX gas sensors to improve the lifetime of distributed sensing systems, Bari; Italy, 13-14 June 2013, <Proceedings of the 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2013, art. no. 6576066, pp. 211-216>, IEEE
  19. Burgués, J., Marco, S., 2018, Low power operation of temperature-modulated metal oxide semiconductor gas sensors (Open Access), Sensors (Switzerland), Volume 18(2), pp. art. no. 339
  20. Ansys Inc., 2017, Ansys User Manual, Ansys Inc., <https://www.ansys.com/>, Дата на последен преглед (Last accessed on): 25.06.2019
  21. Nentchev, A., 2008, Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements, Ph. D. Thesis, <Vienna University of Technology, Vienna, Austria>

Issue

Sensors (Switzerland), vol. 19, issue 3, pp. Article number 2900, 2019, Switzerland, Multidisciplinary Digital Publishing Institute (MDPI), DOI 10.3390/s19132900

Copyright Multidisciplinary Digital Publishing Institute (MDPI)

Цитирания (Citation/s):
1. DOI: 10.3390/MATH8081333 - 2020 - в издания, индексирани в Scopus или Web of Science
2. DOI: 10.1109/SIELA49118.2020.9167149 - 2020 - в издания, индексирани в Scopus или Web of Science
3. Lupan, O., Ababii, N., Mishra, A.K., Bodduluri, M.T., Magariu, N., Vahl, A., Krüger, H., Wagner, B., Faupel, F., Adelung, R., de Leeuw, N.H., Hansen, S., Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteries, (2021) Sensors and Actuators, A: Physical, 329, art. no. 112804, DOI: 10.1016/j.sna.2021.112804 - 2021 - в издания, индексирани в Scopus или Web of Science
4. Sgroi, M.F., Dotoli, M., Giuliano, M., Nicol, G., Parussa, F., Rocca, R., Smart batteries: Requirements of the automotive world, (2021) 2021 IEEE International Workshop on Metrology for Automotive, MetroAutomotive 2021 - Proceedings, pp. 42-47. DOI: 10.1109/MetroAutomotive50197.2021.9502851 - 2021 - в издания, индексирани в Scopus или Web of Science
5. Olarte, J., de Ilarduya, J.M., Zulueta, E., Ferret, R., Fernández-Gámiz, U., Lopez-Guede, J.M., A battery management system with eis monitoring of life expectancy for lead–acid batteries, (2021) Electronics (Switzerland), 10 (11), art. no. 1228, DOI: 10.3390/electronics10111228 - 2021 - в издания, индексирани в Scopus или Web of Science
6. Ji, Y., Application of fault detection using distributed sensors in smart cities, (2021) Physical Communication, 46, art. no. 101182, DOI: 10.1016/j.phycom.2020.101182 - 2021 - в издания, индексирани в Scopus или Web of Science
7. Cai, T., Valecha, P., Tran, V., Engle, B., Stefanopoulou, A., Siegel, J., Detection of Li-ion battery failure and venting with Carbon Dioxide sensors, (2021) eTransportation, 7, art. no. 100100, DOI: 10.1016/j.etran.2020.100100 - 2021 - в издания, индексирани в Scopus или Web of Science
8. Dotoli, Matteo, Riccardo Rocca, Mattia Giuliano, Giovanna Nicol, Flavio Parussa, Marcello Baricco, Anna Maria Ferrari, Carlo Nervi, and Mauro Francesco Sgroi. "A Review of Mechanical and Chemical Sensors for Automotive Li-Ion Battery Systems." Sensors 22, no. 5 (2022): 1763. DOI - 2022 - в издания, индексирани в Scopus или Web of Science
9. Wang, Ze, Lei Zhu, Jianwei Liu, Jianan Wang, and Wei Yan. "Gas Sensing Technology for the Detection and Early Warning of Battery Thermal Runaway: A Review." Energy & Fuels (2022). DOI - 2022 - в издания, индексирани в Scopus или Web of Science
10. Zhou, Kang, Fei Li, Hao Cai, Yuanqi Jing, Junyi Zhuang, Mo Li, and Zheli Xing. "Estimation of the natural gas leakage source with different monitoring sensor networks in an underground utility Tunnel: From the perspectives of energy security." Energy and Buildings 254 (2022): 111645. 10.1016/j.enbuild.2021.111645 - 2022 - в издания, индексирани в Scopus или Web of Science
11. Nasiri, S.; Rabiei, M.; Markuniene, I.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Vilkauskas, A.; Janusas, G. Nanocomposite Based on HA/PVTMS/Cl2FeH8O4 as a Gas and Temperature Sensor. Sensors 2022, 22, 10012. https://doi.org/10.3390/s222410012 - 2022 - в издания, индексирани в Scopus или Web of Science
12. Kong, D., Lv, H., Ping, P., & Wang, G. (2023). A review of early warning methods of thermal runaway of lithium ion batteries. Journal of Energy Storage, 64, 107073. - 2023 - в издания, индексирани в Scopus или Web of Science
13. Li S, Zhou S, Zhao S, Jin T, Zhong M, Cen Z, Gao P, Yan W, Ling M. Room Temperature Resistive Hydrogen Sensor for Early Safety Warning of Li-Ion Batteries. Chemosensors. 2023; 11(6):344. https://doi.org/10.3390/chemosensors11060344 - 2023 - в издания, индексирани в Scopus или Web of Science
14. Kaur P, Stier IK, Bagchi S, Pol VG, Bhondekar AP. Impedimetric Early Sensing of Volatile Organic Compounds Released from Li-Ion Batteries at Elevated Temperatures. Batteries. 2023; 9(12):562. https://doi.org/10.3390/batteries9120562 - 2023 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus