Autors: Zhelev, S. M., Rozeva, A. G.
Title: Big data processing in the cloud - Challenges and platforms
Keywords: Cloud computing, NoSql, Big data, Stream processing

Abstract: Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.

References

    Issue

    AIP Conference Proceedings, vol. 1910, issue 1, pp. 060013, 2017, United States, AIP Publishing LLC

    Цитирания (Citation/s):
    1. Kalipe, G.K.; Behera, R.K. Big Data Architectures: A detailed and application oriented review. Int. Journal Innov. Technol. Explor. Eng. 2019, 8, 2182–2190. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    2. Jiménez, E.E.G., Quintero, J.B., Losada, B.M., Collaborative creation of a reference architecture for the implementation of data service platforms, RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 2020(39), pp. 114-149 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. M. Jahanbakht, W. Xiang, L. Hanzo and M. Rahimi Azghadi, "Internet of Underwater Things and Big Marine Data Analytics—A Comprehensive Survey," in IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 904-956, Secondquarter 2021, doi: 10.1109/COMST.2021.3053118 - 2021 - в издания, индексирани в Scopus или Web of Science
    4. Zaghloul M, Salem M, Ali-Eldin A (2021) A new framework based on features modeling and ensemble learning to predict query performance. PLoS ONE 16(10): e0258439. https://doi.org/10.1371/journal.pone.0258439 - 2021 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science