Autors: Vladkova, T. G., Angelov, O., Stpyanova, D., Gosponova, D. N., Gomes, L., Soares, A., Mergulhao, F., Ivanova, I. Title: Magnetron co-sputtered TiO2/SiO2/Ag nanocomposite thin coatings inhibiting bacterial adhesion and biofilm formation Keywords: TiO2/SiO2/Ag nanocomposite coatings; Antimicrobial; Surface Abstract: Aim of this study is the development of new functional coatings for medical devices, using magnetron co-sputtering to deposit triple TiO2/SiO2/Ag nanocomposite thin films with expected antimicrobial activity. Some surface characteristics (elemental composition, hydrophilic/hydrophobic balance, surface energy and topography) were estimated to look for correlation with bacterial cells growth and biofilm formation on TiO2/SiO2/Ag coated samples. Strong inhibitory effect toward Escherichia coli growth was found: the number of viable bacterial cells approaches to zero at the first 30 min – 1 h, depending on the Ag content. Biofilm formation in urine flow at 48 h is reduced down to 92% compared to a control glass surface. Direct contact and eluted silver mediated killing were experimentally demonstrated as mechanisms of antibacterial action of the TiO2/SiO2/Ag coatings. These coatings are promising candidate for antimicrobial protection of urinary tract devices for at least 48 h, suggesting References Issue
Copyright Elsevier B.V. |
Цитирания (Citation/s):
1. Staneva, A. , Albu-Kaya, M. , Martinov, B. Preparation and antimicrobial activity of collagen/(RGO/ZnO/TiO2/SiO2) composites Journal of Chemical Technology and Metallurgy, 2020, pp. 60-72, 55, 1, https://dl.uctm.edu/journal/node/j2020-1/9_19-131_p_60-72.pdf - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Feyza Güzelçimen, Bükem Tanören, Çağlar Çetinkaya, Meltem Dönmez Kaya, H. İbrahim Efkere, Yunus Özen, Doğukan Bingöl, Merve Sirkeci, Barış Kınacı, M. Burçin Ünlü, Süleyman Özçelik, The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM, Vacuum, 2020, 109766, https://doi.org/10.1016/j.vacuum.2020.109766. - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. W. Srevarit, S. Moonmangmee, P. Phapugrangkul, S. Kuboon, A. Klamchuen, N. Saito, C. Ponchio, Photoelectrocatalytic H2 evolution enhancement over CuO-decorated TiO2 nanocatalysts and promoting E. coli degradation, Journal of Alloys and Compounds, 2020,157818, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2020.157818. - 2020 - в издания, индексирани в Scopus или Web of Science
4. Liu, J., Liu, Y., Suo, X. et al. Cold Spray Construction of Nanostructured Titania Coatings for Photocatalytic Applications. J Therm Spray Tech (2021). https://doi.org/10.1007/s11666-021-01167-1 - 2021 - в издания, индексирани в Scopus или Web of Science
5. V. Kumaravel et al., “Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants,” Chem. Eng. J., p. 129071, 2021, https://doi.org/10.1016/j.cej.2021.129071. - 2021 - в издания, индексирани в Scopus или Web of Science
6. A. V Blinov, M. A. Jasnaja, A. A. Kravtsov, A. A. Gvozdenko, and V. V Raffa, “Microstructure and elemental composition of multicomponent systems based on silicon, titanium and zirconium oxides,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1029, p. 12060, 2021, doi: 10.1088/1757-899x/1029/1/012060. - 2021 - в издания, индексирани в Scopus или Web of Science
7. M. Zhou, X. Chen, L. Zhang, and W. Zeng, “High Performance Novel Gas Sensor Device for Site Environmental Protection Using Ti0.5Sn0.5O2 Nanomaterials,” Journal of Nanoelectronics and Optoelectronics, vol. 15, no. 12. pp. 1423–1428, [Online]. Available: https://www.ingentaconnect.com/content/asp/jno/2020/00000015/00000012/art00001. Цитира се под № 15 SCOPUS and Web of Science, SJR 2019 = 0.171 Q3, IF 2019 = 0.738 - 2020 - в издания, индексирани в Scopus или Web of Science
8. J. Matinha-Cardoso et al., “Surface activation of medical grade polyurethane for the covalent immobilization of an anti-adhesive biopolymeric coating,” J. Mater. Chem. B, vol. 9, no. 17, pp. 3705–3715, May 2021, doi: 10.1039/D1TB00278C. Цитира се под № 44 SCOPUS, SJR 2020 = 1.316 Q1 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105524958&doi=10.1039%2fd1tb00278c&partnerID=40&md5=6327bb0496eeb4d51972a04f27a71141 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
9. S. Liu et al., “Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: A novel biocompatible platform for antibacterial application,” J. Clean. Prod., vol. 315, p. 128201, Sep. 2021, doi: 10.1016/J.JCLEPRO.2021.128201. Цитира се под № 39 SCOPUS and Web of Science IF 2019 = 9.297, SJR 2020 = 1.937 Q1 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
10. S. Kumar, D. N. Roy, and V. Dey, “A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling,” Colloid Interface Sci. Commun., vol. 43, p. 100464, Jul. 2021, doi: 10.1016/J.COLCOM.2021.100464. SCOPUS and Web of Science IF 2019 = 4.914, SJR 2020 = 0.701 Q1 Цитира се под № 181 - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
11. A. V. Singhal, D. Malwal, S. Thiyagarajan, I. Lahiri, “Antimicrobial and antibiofilm activity of GNP-Tannic Acid-Ag nanocomposite and their epoxy-based coatings,” Progress in Organic Coatings, 159, 106421, 2021, doi:10.1016/J.PORGCOAT.2021.106421 - 2021 - в издания, индексирани в Scopus или Web of Science
12. N. Ben Saber, A. Mezni, A. Alrooqi, and T. Altalhi, “Improved Photocatalytic Activity Using Ternary Au-ZnO/rGO Nanocomposite,” J. Inorg. Organomet. Polym. Mater. 2021, pp. 1–8, Oct. 2021, doi: 10.1007/S10904-021-02117-8 - 2021 - в издания, индексирани в Scopus или Web of Science
13. B. Yin et al., “Research and application progress of nano-modified coating in improving the durability of cement-based materials,” Prog. Org. Coatings, vol. 161, p. 106529, Dec. 2021, doi: 10.1016/J.PORGCOAT.2021.106529 - 2021 - в издания, индексирани в Scopus или Web of Science
14. M. Salehi, P. Heidari, B. Ruhani, A. Kheradmand, V. Purcar, and S. Căprărescu, “Theoretical and Experimental Analysis of Surface Roughness and Adhesion Forces of MEMS Surfaces Using a Novel Method for Making a Compound Sputtering Target,” Coatings 2021, Vol. 11, Page 1551, vol. 11, no. 12, p. 1551, Dec. 2021, doi: 10.3390/COATINGS11121551 - 2021 - в издания, индексирани в Scopus или Web of Science
15. M. Díez-Pascual et al., “A Novel Strategy for Creating an Antibacterial Surface Using a Highly Efficient Electrospray-Based Method for Silica Deposition,” Int. J. Mol. Sci. 2022, Vol. 23, Page 513, vol. 23, no. 1, p. 513, Jan. 2022, doi: 10.3390/IJMS23010513 - 2022 - в издания, индексирани в Scopus или Web of Science
16. M. Birkett, L. Dover, C. C. Lukose, A. W. Zia, M. M. Tambuwala, and Á. Serrano-Aroca, “Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces,” Int. J. Mol. Sci. 2022, Vol. 23, Page 1162, vol. 23, no. 3, p. 1162, Jan. 2022, doi: 10.3390/IJMS23031162. - 2022 - в издания, индексирани в Scopus или Web of Science
17. D. Grine, H. Akkari, P. Fernández, T. Mekhalif, S. Hassani, and F. Lekoui, “Synthesis, Characterization and Antibacterial Activity of Ag-TiO2-Fe Composite Thin Films,” Phys. status solidi, Apr. 2022, doi: 10.1002/PSSA.202200036. - 2022 - в издания, индексирани в Scopus или Web of Science
18. S. Tamta, A. Dahiya, and P. S. Kumar, “Modified Stöber synthesis of SiO2@Ag nanocomposites and their enhanced refractive index sensing applications,” Phys. B Condens. Matter, p. 413971, May 2022, doi: 10.1016/J.PHYSB.2022.413971. - 2022 - в издания, индексирани в Scopus или Web of Science
19. T. L. D. Fernando, S. Ray, C. M. Simpson, L. Gommans, and S. Morrison, “Remediation of Fouling on Painted Steel Roofing via Solar Energy Assisted Photocatalytic Self-Cleaning Technology: Recent Developments and Future Perspectives,” Adv Eng Mater, vol. 24, no. 7, p. 2101486, Jul. 2022, doi: 10.1002/ADEM.202101486. - 2022 - в издания, индексирани в Scopus или Web of Science
20. M. M. El-Zahed, M. I. Abou-Dobara, A. K. A. El-Sayed, and Z. A. M. Baka, “Ag/SiO2 nanocomposite mediated by Escherichia coli D8 and their antimicrobial potential,” Nov. Biotechnol. Chim., vol. 21, no. 1, pp. e1023–e1023, Jun. 2022, doi: 10.36547/NBC.1023 - 2022 - в издания, индексирани в Scopus или Web of Science
21. D. Kişla et al., “Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns,” Trends Food Sci. Technol., Mar. 2023, doi: 10.1016/J.TIFS.2023.03.019 - 2023 - в издания, индексирани в Scopus или Web of Science
22. N. Xiao, C. Zhang, X. Yin, K. Yang, F. Zhang, and B. Xiong, “Soft metal micro/nanolubricant in tribology,” Materials Science and Engineering: B, vol. 295, p. 116600, Sep. 2023, doi: 10.1016/J.MSEB.2023.116600. - 2023 - в издания, индексирани в Scopus или Web of Science
23. Liang, Y., Song, Y., Wang, L. et al. Research progress on antibacterial activity of medical titanium alloy implant materials. Odontology (2023). https://doi.org/10.1007/s10266-023-00832-x - 2023 - в издания, индексирани в Scopus или Web of Science
24. J. Both, A.-P. Fülöp, G. S. Szabó, G. Katona, A. Ciorîță, and L. M. Mureșan, “Effect of the Preparation Method on the Properties of Eugenol-Doped Titanium Dioxide (TiO2) Sol-Gel Coating on Titanium (Ti) Substrates,” Gels, vol. 9, no. 8, Art. no. 8, Aug. 2023, doi: 10.3390/gels9080668. - 2023 - в издания, индексирани в Scopus или Web of Science
25. P. C. Uzoma et al., “Recent design approaches, adhesion mechanisms, and applications of antibacterial surfaces,” Chemical Engineering Journal Advances, p. 100563, Sep. 2023, doi: 10.1016/J.CEJA.2023.100563. - 2023 - в издания, индексирани в Scopus или Web of Science
26. L. Duque-Sanchez, Y. Qu, N. H. Voelcker, and H. Thissen, “Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies,” J. Biomed. Mater. Res. A, vol. n/a, no. n/a, doi: 10.1002/jbm.a.37630. - 2023 - в издания, индексирани в Scopus или Web of Science
27. R. I. S. Oliveira et al., “Photocatalytic effect of N–TiO2 conjugated with folic acid against biofilm-forming resistant bacteria,” Heliyon, vol. 9, no. 11, p. e22108, Nov. 2023, doi: 10.1016/j.heliyon.2023.e22108. - 2023 - в издания, индексирани в Scopus или Web of Science
28. S. Izvekov et al., “Research on nature-like and high-tech means to enhance winter wheat growth and development,” E3S Web of Conf., vol. 462, p. 02045, 2023, doi: 10.1051/e3sconf/202346202045. - 2023 - в издания, индексирани в Scopus или Web of Science
29. S. R. Maya, M. R. Posada, J. A. L. Rodas, G. B. Gaitan, and F. J. B. Osorio, “Microstructural and tribological properties of TiO2/Ag Multilayer Coatings Using Magnetron Sputtering Technique for Potential Applications in Non-Permanent Implants,” Thin Solid Films, p. 140168, Dec. 2023, doi: 10.1016/j.tsf.2023.140168. - 2023 - в издания, индексирани в Scopus или Web of Science
30. A. Rosales, H. Mandujano, J. A. Cervantes-Chávez, and K. Esquivel, “Antimicrobial Hydrophobic SiO2-TiO2-PDMS Films: Effect of Indirect Ultrasonic Irradiation on the Synthesis Process,” Journal of Composites Science, vol. 8, no. 3, Art. no. 3, Mar. 2024, doi: 10.3390/jcs8030104. - 2024 - в издания, индексирани в Scopus или Web of Science
31. A. S. Baikin et al., “Obtaining and Studying In Situ a Chitosan–Titanium Dioxide Composite Material for Agriculture,” Inorg. Mater. Appl. Res., vol. 15, no. 2, pp. 383–387, Apr. 2024, doi: 10.1134/S2075113324020072. - 2024 - в издания, индексирани в Scopus или Web of Science
32. Z. Zhang, Y. Zhang, P. Li, A. Burns, X. Li, and H. Dong, “Silver-promoted ceramic conversion treatment of the Ti6Al4V alloy and its mechanical performance,” Journal of the Mechanical Behavior of Biomedical Materials, p. 106629, Jun. 2024, doi: 10.1016/j.jmbbm.2024.106629. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science