Autors: Kralov, I. M., Nedelchev, K. I.
Title: ACOUSTIC METHOD FOR IDENTIFICATION OF RAILWAY WHEEL DISC STRUCTURAL VIBRATIONS USING COMSOL
Keywords: railway wheel, structural vibrations, sound pressure level

Abstract: An investigation of structural vibrations of a simplified disc model of a railway wheel is treated in this study. A numerical investigation of the structural vibrations of a finite element model of the disc is investigated using COMSOL software. An experimental setup is built and used to verify the numerical results. The excitation is caused by the impact hammer and the sound pressure is measured to obtain vibrations response. Based on the results, a method for identification of the disc structural vibrations and noise radiation is verified and few useful conclusions have been made. These results could be used in the process of future investigation and design of low-noise railway wheels.

References

  1. S. BANOV, I. KRALOV, Noise in Transportation Technics, TU-Sofia, Sofia, Bulgaria, 2003.
  2. D. THOMPSON: Railway Noise and Vibration, Elsevier, 2009
  3. B. BELNIKOLOVSKY, B. CHESHANKOV, B. ABUID: Effect of meshing parameters on the dynamic loads of a mechanism with spur gears, American Society of Mechanical Engineers, Design Engineering Division DE, 56, 187 (1993)
  4. B. BELNIKOLOVSKY, B. ABUID: On the dynamic characteristics of a mechanism with two-stage spur gears, American Society of Mechanical Engineers, Petroleum Division PD, 64(7) 261 (1994)
  5. B. CHESHANKOV, B. BELNIKOLOVSKY, I. JORDANOV: Multicriteria optimization of a machine aggregate with single stage spur gears, International Conference on Control of Oscillations and Chaos, Proceedings, 2, 267 (1997)
  6. A. CIGADA, S. MANZONI, M. VANALI: Vibro-acoustic characterization of railway wheels, Applied Acoustics 69, 530 (2008)
  7. G. A. EFTHIMEROS, D. I. PHOTEINOS, Z. G. DIAMANTIS, D. T. TSAHALIS: Vibration/noise optimization of a FEM railway wheel model, Engineering Computations, 19, 922 (2002)
  8. G. TODOROV, K. KAMBEROV, I. KRALOV, I. IGNATOV: Influence of the Contact Roughness Upon Railway Monobloc Wheel Acoustic Behaviour on Virtual Prototyping Approach, AMEE-2017 - AIP, 910 (2017). 9. J. Nielsena, C. Fredo, Multi-disciplinary optimization of railway wheels, Journal of Sound and Vibration, 293, 510 (2006)
  9. J. TIAN, K. WANG, K. XIAO: Analysis of Vibration and Sound Radiation Characteristics of Resilient Wheel in Metro, American Journal of Mechanical and Industrial Engineering, 3(4), 55 (2018)
  10. X. ZHANG, H. G. JONASSON, Directivity of railway noise sources, Journal of Sound and Vibration, 293, 995 (2006)
  11. H. Jian, W. Ruiqian, W. Di, GUAN Qinghua, Z. Yumei, X. Xinbiao, and J. Xuesong: Effect of Wheel Load on Wheel Vibration and Sound Radiation, Chinese Journal of Mechanical Engineering, 28(1), (2015)
  12. B. SUAREZ, J. A. CHOVER, P. RODRÍGUEZ AND F.J. GONZÁLEZ: Effectiveness of resilient wheels in reducing noise and vibrations, Proceedings of the Institution of Mechanical Engineers, Part F Journal of Rail and Rapid Transit, 225(6), p. 545 (2011)
  13. G. TODOROV, K. KAMBEROV, G. KYURKCHIEV: Parametric optimisation of flywheel design, Journal of the Balkan Tribological Association, 24(3), p. 390 (2018)
  14. H. LEE, R. SINGH: Comparison of two analytical methods used to calculate sound radiation from radial vibration modes of a thick annular disc, Journal of Sound and Vibration, 285, 1210 (2005)
  15. R. PIEREN, K HEUTSCHI, J. M. WUNDERLI, M. SNELLEN, D. G. SIMONS: Auralization of railway noise: Emission synthesis of rolling and impact noise, Applied Acoustics, 127, 34 (2017)
  16. M. MEHRGOU: A method to apply ISO 3745 for the sound power measurement of I.C. Engines in a limited space, Master’s Degree Project, Royal Institute of Technology, Stockholm Sweden, 2012
  17. HP COMPANY: The Fundamental of Modal Testing, Application Note 243-3, Agilent Technologies, 2000
  18. H. LEE, R. SINGH: Acoustic radiation from out-of-plane modes of an annular disc using thin and thick plate theories, Journal of Sound and Vibration, 282 (1+2), 313 (2005)
  19. Y. IVANOVA, V. Vassilev, P. Djondjorov, Str. Djoumaliisky, Experimental-Theoretical approach to the identification of effective sound attenuation panels from recycled materials, Bulgarian Chemical Communications, 42, pp. 1–8 (2015)
  20. V. JIVKOV, Ph. Philipoff, N. Nikolov, Velocities in contact area of turning elastic tires, Journal of the Balkan Tribological Association, 22(3-I), pp. 2210-2217 (2016)
  21. M. NILSSON, J. Bengtsson, R. Klaeboe, Environmental Methods for Transport Noise Reduction, CRC Press, Taylor & Francis Group (2014)
  22. G. X. CHEN, J. B. Xiao, Q. Y. Liu, Z. R. Zhou, Complex Eigenvalue Analysis of Railway Curve Squeal, Noise and Vibration Mitigation for Rail Transportation Systems, Proceedings of the 9th International Workshop on Railway Noise, Germany, pp. 433–439 (2007)

Issue

Journal of the Balkan Tribological Association, vol. 25, issue 2, pp. 546-557, 2019, Bulgaria, SciBulCom

Цитирания (Citation/s):
1. Todorov, G.D., Kamberov, K.H., Black box/white box hybrid method for virtual prototyping validation of multiphysics simulations and testing, IOP Conference Series: Materials Science and Engineering 878(1),012051 - 2020 - в издания, индексирани в Scopus или Web of Science
2. Kandeva, M., Rozhdestvensky, Y.V., Svoboda, P., Kalitchin, Z., Zadorozhnaya, E., Influence of the size of silicon carbide nanoparticles on the abrasive wear of electroless nickel coatings. Part 1, Journal of Environmental Protection and Ecology 20(4), pp. 1889-1903 - 2019 - в издания, индексирани в Scopus или Web of Science
3. Todorov G., Kamberov K., Random vibration endurance test of automotive component using virtual prototyping, IOP Conference Series: Materials Science and Engineering, 1002(1), art. no. 012027. - 2020 - в издания, индексирани в Scopus или Web of Science
4. Demetrashvili, D., Bilashvili, K., Machitadze, N., Tsintsadze, N., Gvakharia, V., Gelashvili, N., Trapaidze, V., Kuzanova, I., NUMERICAL MODELLING OF MARINE LITTER DISTRIBUTION IN GEORGIAN COASTAL WATERS OF THE BLACK SEA, (2022) Journal of Environmental Protection and Ecology, 23 (2), pp. 531-541 - 2022 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus