Autors: Mladenov, V. M., Kirilov, S. M.
Title: A Memristor Model with a Modified Window Function and Activation Thresholds
Keywords: nonlinear dopant drift, modified window function, voltage-de

Abstract: In this research a new nonlinear dopant drift memristor model with a modified window function and activation thresholds is proposed. This model is appropriate for different types of the memristor voltage. For this purpose, a combination of a modified Biolek window function and Joglekar window function with a voltage-dependent exponent is used. The new memristor model is based on the Biolek model, the Joglekar model and the Generalized Boundary Condition Memristor (GBCM) model. The boundary effects are represented using a switch-based algorithm similar to those used in the GBCM model. As in the GBCM model, in the memristor model proposed here activation thresholds are applied. It has also an improved property for changing the ionic dopant drift nonlinearity extent in accordance with the memristor voltage. The proposed model could realistically represent the nonlinear dopant drift phenomenon. The offered relationship between the integer exponent in the modified window function and the m

References

    Issue

    2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2018, Italy, IEEE, DOI: 10.1109/ISCAS.2018.8351429

    Цитирания (Citation/s):
    1. Wang, Y., Wang, G., Shen, Y., Iu, H.H.-C. A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory, Circuits, Systems, and Signal Processing 39(7), pp. 3496-3511 - 2020 - в издания, индексирани в Scopus или Web of Science
    2. Demin, V.A., Surazhevsky, I.A., Emelyanov, A.V., Kashkarov, P.K., Kovalchuk, M.V. Sneak, discharge, and leakage current issues in a high-dimensional 1T1M memristive crossbar, Journal of Computational Electronics 19(2), pp. 565-575 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Yakopcic, C., Taha, T.M., Mountain, D.J., (...), Marinella, M.J., McLean, M. Memristor Model Optimization Based on Parameter Extraction from Device Characterization Data, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39(5),8695752, pp. 1084-1095 - 2020 - в издания, индексирани в Scopus или Web of Science
    4. Lammie, C., Krestinskaya, O., James, A., Azghadi, M.R. Variation-aware binarized memristive networks, 2019 26th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019 8964998, pp. 490-493 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Nigus, M., Priyadarshini, R., Mehra, R.M. Binary-Weighted Synaptic Circuit for Neuromorphic Learning System Using Stochastic Memristor SPICE Model, Proceedings - 2019 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2019 2019-January,8974525, pp. 268-273 - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Karimov, T., Butusov, D., Andreev, V., Karimov, A., Tutueva, A. Accurate synchronization of digital and analog chaotic systems by parameters re-identification, Electronics (Switzerland) 7(7),123 - 2018 - в издания, индексирани в Scopus или Web of Science
    7. Messaris, I., Ntogramatzi, M., Nikolaidis, S. A voltage-controlled window function approach, ANNA 2018 - Advances in Neural Networks and Applications 2018 pp. 29-33 - 2018 - в издания, индексирани в Scopus или Web of Science
    8. JunruiLia, Zhekang Dong, Li Luo, Shukai Duancde, LidanWang, A novel versatile window function for memristor model with application in spiking neural network., Neurocomputing Volume 405, 10 September 2020, https://doi.org/10.1016/j.neucom.2020.04.111, Pages 239-246. - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Wang, Y., Wang, G., Shen, Y., Iu, H.H.-C. A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory., Circuits, Systems, and Signal Processing, 39(7), pp. 3496-3511, DOI: 10.1007/s00034-019-01330-8 - 2020 - в издания, индексирани в Scopus или Web of Science
    10. Saha, Panthadeb, Rudra Nath Palit, and Prasun Ghosal. "Generalized Memristor Model using Simulink and its Rectification for Sinusoidal and other Periodic Signals." In 2021 Devices for Integrated Circuit (DevIC), pp. 368-372. IEEE, 2021. - 2021 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    11. Krestinskaya, Olga, Aidana Irmanova, and Alex Pappachen James. "Memristors: properties, models, materials." In Deep Learning Classifiers with Memristive Networks, pp. 13-40. Springer, Cham, 2020. - 2020 - в издания, индексирани в Scopus или Web of Science
    12. Ramakrishnan, Balamurali, Mahtab Mehrabbeik, Fatemeh Parastesh, Karthikeyan Rajagopal, and Sajad Jafari. "A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling." Electronics 11, no. 1 (2022): 153. - 2022 - в издания, индексирани в Scopus или Web of Science
    13. 1. Dopazo, P., de Benito, C., Camps, O., Stavrinides, S.G. and Picos, R., 2022. GERARD: GEneral RApid Resolution of Digital Mazes Using a Memristor Emulator. Physics, 4(1), pp.1-11. - 2022 - в издания, индексирани в Scopus или Web of Science
    14. [22] Kirilov, S., I. Zaykov., “A Neural Network with HfO2 Memristors”, Proc. Tech. Univ. of Sofia, ISSN: 1311-0829, Vol.. 71, No. 1, 2021. - 2021 - в български издания
    15. Wang, F. and Wang, F., 2022. “Floating Memcapacitor Based on Knowm Memristor and its Dynamic Behaviors,” IEEE Transactions on Circuits and Systems II: Express Briefs., pp. 1-1, DOI: 10.1109/TCSII.2022.3201225, (Scopus, Google Scholar), SJR 1.112 - 2022 - в издания, индексирани в Scopus или Web of Science
    16. J. Sun, J. Yang and P. Liu, "Design of General Flux-controlled and Charge-controlled Memristor Emulators Based on Hyperbolic Functions," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, doi: 10.1109/TCAD.2022.3186928. (Google Scholar, Scopus) - 2022 - в издания, индексирани в Scopus или Web of Science
    17. Li, Y., Xie, L., Xiao, P., Zheng, C. and Hong, Q., 2023. Drift speed adaptive memristor model. Neural Computing and Applications, pp.1-12. ISSN 09410643, DOI 10.1007/s00521-023-08401-7 (Web of Science, Scopus, Google Scholar) SJR 1.072, IF 5.102 - 2023 - в издания, индексирани в Scopus или Web of Science
    18. Camps Pascual, O.V., 2023. On the use of stochastic logic for nonlinear circuits and systems – Doctoral Thesis., pp. 1 - 147 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    19. Pascual, O. C. (2023). On the use of stochastic logic for non-linear circuits and systems (Doctoral dissertation, Universitat de les Illes Balears). (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    20. Lee, Y., Kim, K. and Lee, J., 2024. “A Compact Memristor Model Based on Physics-Informed Neural Networks,” Micromachines, vol. 15, issue (2), pp. 1-15, ISSN 2072666X, DOI 10.3390/mi15020253 (Web of Science, Scopus, Google Scholar) SJR 0.546, IF 3.4 - 2024 - в издания, индексирани в Scopus или Web of Science
    21. Sun, J., Zhao, Y., Wang, Y., & Liu, P. (2024). “Memristor-Based Affective Associative Memory Circuit With Emotional Transformation,” IEEE Transactions on Circuits and Systems II: Express Briefs. pp. 1-1, DOI: 10.1109/TCSII.2024.3393731 (Web of Science, Scopus, Google Scholar) IF 4.0, SJR 1.523 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: постер/презентация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science