Autors: Mladenov, V. M., Kirilov, S. M.
Title: A Nonlinear Drift Memristor Model with a Modified Biolek Window Function and Activation Threshold
Keywords: memristor; nonlinear ionic drift; modified Biolek window fun

Abstract: The main idea of the present research is to propose a new memristor model with a highly nonlinear ionic drift suitable for computer simulations of titanium dioxide memristors for a large region of memristor voltages. For this purpose, a combination of the original Biolek window function and a weighted sinusoidal window function is applied. The new memristor model is based both on the Generalized Boundary Condition Memristor (GBCM) Model and on the Biolek model, but it has an improved propertyan increased extent of nonlinearity of the ionic drift due to the additional weighted sinusoidal window function. The modified memristor model proposed here is compared with the Pickett memristor model, which is used here as a reference model. After that, the modified Biolek model is adjusted so that its basic relationships are made almost identical with these of the Pickett model. After several simulations of our new model, it is established that its behavior is similar to the realistic Pickett m

References

    Issue

    Electronics, vol. 6, issue 4, pp. 1-15, 2017, Switzerland, MDPI, DOI 10.3390/electronics6040077

    Цитирания (Citation/s):
    1. Hassanein, A.M., Elsafty, A.H., Madian, A.H., Said, L.A., Radwan, A.G. Center pulse width modulation implementation based on memristor, AEU - International Journal of Electronics and Communications 111,152843 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Zhou, E., Fang, L., Yang, B. A general method to describe forgetting effect of memristors, Physics Letters, Section A: General, Atomic and Solid State Physics 383(10), pp. 942-948 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Zhang, X., Long, K. Improved Learning Experience Memristor Model and Application as Neural Network Synapse, IEEE Access 7,8625409, pp. 15262-15271 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Maria. Helena Fino; Tiago Pina, On the Use of Modified Biolek Window for Memristor Modeling in VerilogA, 2018 25th International Conference "Mixed Design of Integrated Circuits and System" (MIXDES), IEEE, DOI: 10.23919/MIXDES.2018.8443592 - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    5. Melaku Nigus, Rashmi Priyadarshini & R. M. Mehra, Stochastic and novel generic scalable window function-based deterministic memristor SPICE model comparison and implementation for synaptic circuit design, SN Appl. Sci. 2, 128 (2020). https://doi.org/10.1007/s42452-019-1888-z - 2020 - в издания, индексирани в Scopus или Web of Science
    6. JunruiLia, ZhekangDong, Li Luo, Shukai Duancd, LidanWang, A novel versatile window function for memristor model with application in spiking neural network, Neurocomputing Volume 405, 10 September 2020, Pages 239-246, https://doi.org/10.1016/j.neucom.2020.04.111 - 2020 - в издания, индексирани в Scopus или Web of Science
    7. Sumedha Gandharava Dahl , Robert C Ivans, Robert Ivans , Kurtis D Cantley, Modeling Memristor Radiation Interaction Events and the Effect on Neuromorphic Learning Circuits, ICONS '18: Proceedings of the International Conference on Neuromorphic SystemsJuly 2018 Article No.: 1 Pages 1–8https://doi.org/10.1145/3229884.3229885 - 2018 - в издания, индексирани в Scopus или Web of Science
    8. Kirilov, S., Zaykov, I. Analysis of memristor-based differentiating circuit., COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 39(3), pp. 683-690 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Mitkova, M. Proton Irradiation Hardness of CBRAM Devices Based on Chalcogenide Glasses and Materials Research Related to the Occurring Effects., 2018 IEEE Workshop on Microelectronics and Electron Devices, WMED 2018 pp. 1-5 - 2018 - в издания, индексирани в Scopus или Web of Science
    10. • Zaman, M.A., Joshi, R., Katkoori, S. High level modeling of memristive crossbar arrays., Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2020-July,9154929, pp. 524-529, Article number 9154929, Pages 524-52919th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2020; Limassol; Cyprus; 6 July 2020 through 8 July 2020; Category numberCFP20179-ART; Code 162263, Publisher: IEEE Computer Society, DOI: 10.1109/ISVLSI49217.2020.000-3 - 2020 - в издания, индексирани в Scopus или Web of Science
    11. Zhevnenko D.,Meshchaninov F.,Kozhevnikov V.,Shamin E.,Belov A.,Gerasimova S.,Guseinov D.,Mikhaylov A.,Gornev E., Simulation of memristor switching time series in response to spike-like signal, Chaos, Solitons and Fractals, Volume 142January 2021 Article number 110382, DOI 10.1016/j.chaos.2020.110382 - 2021 - в издания, индексирани в Scopus или Web of Science
    12. Nigus, M., Rashmi Priyadarshini, and R. M. Mehra. "Binary-Weighted Synaptic Circuit for Neuromorphic Learning System Using Stochastic Memristor SPICE Model." In 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 268-273. IEEE, 2019. - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    13. Milić, Miljana, and Miljan Petrović. "A New Simplified Spice Modelling of Memristor." - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    14. Agudov, N.V., Dubkov, A.A., Safonov, A.V., Krichigin, A.V., Kharcheva, A.A., Guseinov, D.V., Koryazhkina, M.N., Novikov, A.S., Shishmakova, V.A., Antonov, I.N. and Carollo, A., 2021. Stochastic model of memristor based on the length of conductive region. Chaos, Solitons & Fractals, 150, p.111131. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Jagan, Neha, S. Raksha, S. U. Namitha, and Shafiya Kouser. "DESIGN OF MEMRISTOR BASED MULTIPLIER." (2019). - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    16. Ramakrishnan, Balamurali, Mahtab Mehrabbeik, Fatemeh Parastesh, Karthikeyan Rajagopal, and Sajad Jafari. "A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling." Electronics 11, no. 1 (2022): 153. - 2022 - в издания, индексирани в Scopus или Web of Science
    17. Han, J., Sun, J., Xiao, X. and Liu, P., 2021, October. Memristor-Based Neural Network Circuit of Long-term Memory. In 2021 International Conference on Neuromorphic Computing (ICNC) (pp. 84-90). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
    18. 50) Mitkova, M., Invited Contribution Proton Irradiation Hardness of CBRAM Devices Based on Chalcogenide Glasses and Materials Research Related to the Occurring Effects. ratio, 500, p.1. (Google Scholar) - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    19. 51) Y. Dai, Z. Feng and Z. Wu, "A Novel Window Function Enables Memristor Model With High Efficiency Spiking Neural Network Applications," in IEEE Transactions on Electron Devices, doi: 10.1109/TED.2022.3172050. (Scopus, Web of Science) IF 2.992 - 2022 - в издания, индексирани в Scopus или Web of Science
    20. Song, H., Luo, Y., Zhong, X., Wang, J., Guo, H. and Cong, P., 2022. TID Effect and Damage Model of 60 CO γ for the TiO 2 Nano-Rod-Based Resistive Switching Memory. IEEE Transactions on Electron Devices, vol. 69, issue (12), pp.6656-6661. DOI: 10.1109/TED.2022.3206723 (Web of Science, Google Scholar) IF 3.207 - 2022 - в издания, индексирани в Scopus или Web of Science
    21. M. H. Fino, "Nanoelectronic Challenges and Opportunities for Cyber-Physical Systems," 2022 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 2022, pp. 15-21, doi: 10.23919/MIXDES55591.2022.9837959. (Web of Science, Scopus, Google Scholar) - 2022 - в издания, индексирани в Scopus или Web of Science
    22. Singh, C.P. and Pandey, S.K., 2022. An efficient and flexible window function for a memristor model and its analog circuit application. Journal of Computational Electronics, pp.1-9., https://doi.org/10.1007/s10825-022-01939-0 (Web of Science, Scopus, Google Scholar) IF 1.873 - 2022 - в издания, индексирани в Scopus или Web of Science
    23. Li, Y., Xie, L., Xiao, P., Zheng, C. and Hong, Q., 2023. Drift speed adaptive memristor model. Neural Computing and Applications, pp.1-12. ISSN 09410643, DOI 10.1007/s00521-023-08401-7 (Web of Science, Scopus, Google Scholar) SJR 1.072, IF 5.102 - 2023 - в издания, индексирани в Scopus или Web of Science
    24. Zafar, M., Awais, N., Shehzad, M.N., Maqsood, A. and Razzak, A., 2023. Phenomenological modeling of memristor fabricated through screen printing based on the structure of Ag/Polymer/Cu. DOI: https://doi.org/10.21203/rs.3.rs-2560779/v1, pp. 1 – 17 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    25. Soni, K. and Sahoo, S., 2023. Highly Accurate Memristor Modelling Using Mos Transistor for Analog Applications. pp. 1 – 18, (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    26. Taha, A., Barakat, B., Taha, M.M., Shawky, M.A., Lai, C.S., Hussain, S., Abideen, M.Z. and Abbasi, Q.H., 2023. A Comparative Study of Single and Multi-Stage Forecasting Algorithms for the Prediction of Electricity Consumption Using a UK-National Health Service (NHS) Hospital Dataset. Future Internet, vol. 15, issue (4), pp. 1 – 17, https://doi.org/10.3390/fi15040134 (Scopus, Google Scholar) - 2023 - в издания, индексирани в Scopus или Web of Science
    27. Yadav, M., Jamil, M., Rizwan, M. and Kapoor, R., 2023. Application of Fuzzy-RBF-CNN Ensemble Model for Short-Term Load Forecasting. Journal of Electrical and Computer Engineering, vol. 2023. pp. 1 – 14, https://doi.org/10.1155/2023/8669796 (Web of Science, Scopus, Google Scholar) - 2023 - в издания, индексирани в Scopus или Web of Science
    28. Yin, C. and Mao, S., 2023. Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting. Energy, p.126844., ISSN 03605442, DOI 10.1016/j.energy.2023.126844 (Web of Science, Scopus, Google Scholar) SJR 2.041, IF 8.234. - 2023 - в издания, индексирани в Scopus или Web of Science
    29. Li, D., Tan, Y., Zhang, Y., Miao, S. and He, S., 2023. Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model. International Journal of Electrical Power & Energy Systems, 146, p.108743., ISSN 01420615, DOI 10.1016/j.ijepes.2022.108743 (Web of Science, Scopus, Google Scholar) SJR 1.544, IF 5.416 - 2023 - в издания, индексирани в Scopus или Web of Science
    30. Szabó, D., Göcsei, G., Németh, B., Lovrenčić, V., Gubeljak, N., Kovač, M. and Krisper, U., 2023. DLR related model development and performance analysis in the framework of FLEXITRANSTORE. Energy Reports, vol. 9, pp.452-459., ISSN 23524847, DOI 10.1016/j.egyr.2022.11.010 (Web of Science, Scopus, Google Scholar) SJR 0.894, IF 5.258 - 2023 - в издания, индексирани в Scopus или Web of Science
    31. Song, H., Liu, Y., Yan, J., Zhong, X., Wang, J. and Guo, H., 2023. Performance degradation and I–V model of TiO2-film-based resistive switching memory under proton irradiation. Applied Physics Letters, vol. 122, issue (21). ISSN 00036951, DOI 10.1063/5.0147593 (Web of Science, Scopus, Google Scholar) SJR 1.043, IF 4.0. - 2023 - в издания, индексирани в Scopus или Web of Science
    32. 262) Soni, K. and Sahoo, S., 2024. Highly accurate memristor modelling using MOS transistor for analog applications. Multimedia Tools and Applications, pp.1-16. ISSN 13807501, DOI 10.1007/s11042-023-18082-y (Web of Science, Scopus, Google Scholar) IF 3.6, SJR 0.72 - 2024 - в издания, индексирани в Scopus или Web of Science
    33. Zafar, M., Awais, M.N., Shehzad, M.N., Masood, A., Javed, A. and Razaq, A., 2023. Phenomenological modeling of memristor fabricated by screen printing based on the structure of Ag/polymer/Cu. Journal of Computational Electronics, vol. 22, issue (6), pp.1735-1747. ISSN 15698025, DOI 10.1007/s10825-023-02104-x (Web of Science, Scopus, Google Scholar) IF 2.1, SJR 0.344 - 2023 - в издания, индексирани в Scopus или Web of Science
    34. Zafar, M., Awais, N., Shehzad, M.N., Maqsood, A. and Razzak, A., 2023. “Phenomenological modeling of memristor fabricated through screen printing based on the structure of Ag/Polymer/Cu,” Journal of Computational Electronics, Volume 22, Issue 6, Pages 1735 – 1747, ISSN 15698025, DOI 10.1007/s10825-023-02104-x (Scopus, Google Scholar) SJR 0.344, IF 2.1 - 2023 - в издания, индексирани в Scopus или Web of Science
    35. Bednarz, K. S., & Garda, B. (2024). “Measurement and Modeling of SDC Memristors: Extensive Study,” pp. 1-22, in press, https://doi.org/10.20944/preprints202408.1855.v1(Google Scholar) - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    36. HONG, Taekuk. „A Field-programmable Metamaterial Using Memristor As A Stable Switcher,“ Master Thesis, 2023. https://scholarcommons.sc.edu/etd/7629 (Google Scholar) - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    37. Bednarz, K. and Garda, B., 2024. “Measurement and Modeling of Self-Directed Channel (SDC) Memristors: An Extensive Study,” Energies, vol. 17, issue (21), pp. 1-20, https://doi.org/10.3390/en17215400 (Web of Science, Scopus, Google Scholar) IF 3.0, SJR 0.651 - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science