Autors: Mishkov, R. L., Petrov, V. S.
Title: Nonlinear adaptive observer with asymptotically stable parameter estimator
Keywords: Nonlinear control systems; Nonlinear adaptive observers; Asy

Abstract: The paper presents a new approach for nonlinear adaptive observer design for nonlinear systems in reduced generalized observer canonical form. Parametric identifiability criterion and the stable data accumulation concepts are introduced. Global uniform asymptotic state and exponential parameter estimation are provided with controllable performance specifications. The approach is compatible with other nonlinear adaptive design methods. A nonlinear adaptive state observer and adaptive unknown parameter estimator of gradient type are designed for a single-link flexible joint manipulator providing asymptotic state estimation and exponential parameter estimation which is illustrated by a dynamic simulation.

References

  1. Adetola V., Guay M., 2007, Finite-time Parameter Estimation in Adaptive Control of Nonlinear, New York, NY, USA, 9-13 July 2007, <2007 American Control Conference>, IEEE
  2. Adetola V., Guay M., 2009, Performance improvement in adaptive control of nonlinear systems, Hyatt Regency Riverfront, St. Louis, MO, USA, 10-12 June 2009, <2009 American Control Conference>, IEEE
  3. Adetola V., Guay M., 2010, Performance Improvement in Adaptive Control of Linearly Parameterized Nonlinear Systems, IEEE Transactions on Automatic Control, Volume 55(9), pp. 2182 – 2186
  4. Adetola V., Guay M., 2007, Finite-time Parameter Estimation in Adaptive Control of Nonlinear Systems, New York, NY, USA, 9-13 July 2007, <2007 American Control Conference>, IEEE
  5. Bastin G., Gevers M., 1988, Stable Adaptive Observers for Nonlinear Time-varying Systems, IEEE Transactions on Automatic Control, Volume 33(7), pp. 650–658
  6. Besancon G., 2000, Remarks on Nonlinear Adaptive Observer Design, Systems & Control Letters, Volume 41(4), pp. 271–280
  7. Cho Y., Rajamani R., 1995, A Systematic Approach to Adaptive Observer Synthesis for Nonlinear Systems, Monterey, CA, USA, 27-29 August 1995, <Proceedings of Tenth International Symposium on Intelligent Control>, IEEE
  8. Cho Y., Rajamani R., 1997, A Systematic Approach to Adaptive Observer Synthesis for Nonlinear Systems, IEEE Transactions on Automatic Control, Volume 42(4), pp. 534–537
  9. Fradkov A., Miroshnik I., Nikiforov V., 1999, Nonlinear and Adaptive Control of Complex Systems, Dordrecht, Kluwer Academic Publishers
  10. Jo N.-H., Son Y.-I., 2004, Adaptive Observer Design for Nonlinear Systems Using Generalized Nonlinear Observer Canonical Form, Journal of Mechanical Science and Technology, Volume 18(7), pp. 1150 – 1158
  11. Krstic M., Kanellakopoulos I., Kokotovic, P., 1995, Nonlinear and Adaptive Control Design, New York, NY, USA, John Wiley and Sons Inc.
  12. Lewis F., Dawson D., Abdallah C., 2004, Robot Manipulator Control Theory and Practice, 2nd ed., New York, Marcel Dekker, Inc.
  13. Marino R., 1990, Adaptive Observers for Single Output Nonlinear Systems, IEEE Transactions on Automatic Control, Volume 35(9), pp. 1054 - 1058
  14. Kreisselmeier G., 1977, Adaptive observers with exponential rate of convergence, IEEE Transactions on Automatic Control, Volume 22(1), pp. 2-8
  15. Marino R., Tomei, P., 1995, Adaptive Observers with Arbitrary Exponential Rate of Convergence for Nonlinear Systems, IEEE Transactions on Automatic Control, Volume 40(7), pp. 1300 – 1304
  16. Marino R., Tomei, P., 1992, Global Adaptive Observers for Nonlinear Systems via Filtered Transformations, IEEE Transactions on Automatic Control, Volume 37(8), pp. 1239 – 1245
  17. Mishkov, R. L, Petrov, V. S, 2013,International Conference АUTOMATICS AND INFORMATICS’2013, PROCEEDINGS: Nonlinear adaptive observers in adaptive tuning functions tracking control, София, Bulgaria, pp. I-289 – I-292
  18. Na J., Herrmann G., Ren X., Mahyuddin M., Barber P., 2011, Robust Adaptive Finite-Time Parameter Estimation and Control of Nonlinear Systems, Denver, CO, USA, 28-30 Sept. 2011, <2011 IEEE International Symposium on Intelligent Control (ISIC)>, IEEE
  19. Na J., Mahyuddin M., Herrmann G., Ren X., 2013, Robust adaptive finite-time parameter estimation for linearly parameterized nonlinear systems, Xi'an, China, 26-28 July 2013, <Proceedings of the 32nd Chinese Control Conference>, IEEE
  20. Na J., Mahyuddin M., Herrmann G., Ren X, 2013, A novel robust adaptive control algorithm with finite-time online parameter estimation of a humanoid robot arm, Robotics and Autonomous Systems, Volume 62(3), pp. 294–305
  21. Petrov, V. S, Darmonski, S. G., 2012,Student Conference Electrical Engineering, Information and Communication Technology EEICT: Observer Based Adaptive Nonlinear Control System Design for a Single Link Manipulator, Brno, Czech Republic, pp. 116–120
  22. Mishkov R. L., 2005, Nonlinear Observer Design by Reduced Generalized Observer Canonical Form, International Journal of Control, Volume 78(3), pp. 172-185
  23. Rajamani R., Hedrick, J., 1993, Adaptive Observer for Active Automotive Suspensions, San Francisco, CA, USA, 2-4 June 1993, <1993 American Control Conference>, IEEE
  24. Rajamani R., Hedrick, J., 1995, Adaptive observers for active automotive suspensions: theory and experiment, EEE Transactions on Control Systems Technology, Volume 3(1), pp. 86–93
  25. Slotine J.-J., Li W., 1991, Applied Nonlinear Control, Englewood Cliffs, New Jersey, USA, Prentice Hall
  26. Volyanskyy K., Calise A., Yang B.-J., 2006, A novel Q-modification term for adaptive control, Minneapolis, MN, USA, 14-16 June 2006, <2006 American Control Conference>, IEEE

Issue

Journal of Advanced Research in Dynamical and Control Systems, vol. 7, issue 1, pp. 22-44, 2015, United States, 2015 Institute of Advanced Scienti c Research, ISSN 1943-023X

Цитирания (Citation/s):
1. Kolpak, E., Ivanov, S., 2015, Mathematical Modeling of the System of Drilling Rig, Contemporary Engineering Sciences, 8(16), pp. 699-708 - 2015 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Ivanov, S., Melnikov V., 2015, Mathematical Modeling Vibration Protection System for the Motor of the Boat, Applied Mathematical Sciences, 9(119), pp. 5951 - 5960 - 2015 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

Вид: статия в списание, публикация в реферирано издание