Autors: Kanchev, H. C., Hinov, N. L., Gilev, B. N., B. François.
Title: Modelling and control by neural network of electric vehicle traction system
Keywords: Electric vehicle, neural network, regenerative braking, ultracapacitor

Abstract: Modelling and control by neural network of hybrid electric vehicle traction system is presented in this paper. The electric drive is composed by a battery bank and an ultracapacitor connected in parallel through bidirectional DC converters and a Brushless DC Motor driven by a three-phase inverter. In the electric drive control loop is implemented a NARMA neural network. The mechanical model comprises a gearbox and a model of the road-wheel friction force and vehicle aerodynamics. All the masses and inertia are expressed relative to the rotor of the motor. The model is studied by simulations with two driving cycles and an assessment of the available energy from regenerative braking is performed. The percentage of recycled energy from regenerative braking is assessed.

References

    Issue

    Elektronika ir Elektrotechnika, vol. 24, issue 3, pp. 23-28, 2018, Lithuania, ISSN 2029-5731

    Full text of the publication

    Цитирания (Citation/s):
    1. Singh, K.V., Bansal, H.O., Singh, D., Fuzzy logic and Elman neural network tuned energy management strategies for a power-split HEVs, Energy 225,120152, 2021 - 2021 - в издания, индексирани в Scopus или Web of Science
    2. Chen, X., Chen, Y., Lin, Z., (...), Chen, J., Zhang, Z., “Design of High-Power Energy Storage Bidirectional Power Conversion System”, Proceedings of the 2020 24th International Conference Electronics, (ELECTRONICS 2020), 2020, ISBN: 978-172815868-6, DOI: 10.1109/IEEECONF49502.2020.9141627 - 2020 - в издания, индексирани в Scopus или Web of Science
    3. Lago, L.F.R., Faceroli, S.T., Ferreira, R.A.F., Rodrigues, M.C.B.P., “Power Demand Prediction Based on Mixed Driving Cycle Applied to Electric Vehicle Hybrid Energy Storage System”, 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference, (COBEP/SPEC 2019), 2019, ISBN: 978-172814180-0, DOI: 10.1109/COBEP/SPEC44138.2019.9065671 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Li, Y., Lei, Y., Lin, X., Zhu, Y., “Research on the Application of an SMES Based on Sliding Mode Control to Enhance the LVRT Capability of a Grid-Connected PV System”, Electric Power Components and Systems Volume 47(9-10), pp. 914-926, ISSN: 15325008, 2019, DOI: 10.1080/15325008.2019.1627612 - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Zarkov, Z., Lazarov, V., Rizov, P., Stoyanov, L., Popov, E., “An approach for modeling the electronic converter-motor system for electric vehicles”, 16th Conference on Electrical Machines, Drives and Power Systems, (ELMA 2019), 2019, ISBN: 978-172811413-2, DOI: 10.1109/ELMA.2019.8771484 - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Patel, V., Ray, R., “A critical review on traction control system”, International Journal of Mechanical and Production Engineering Research and Development Volume 9(3), pp. 1815-1820, ISSN: 22496890, DOI: 10.24247/IJMPERDJUN2019195 - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Popov, S., Shterev, V., Baeva, S., Andriukaitis, D., Hinov, N. ,"Error estimation of vehicle traffic intensity prediction in an urban environment", AIP Conference Proceedings 2333,090021 - 2021 - в издания, индексирани в Scopus или Web of Science
    8. Hinov, N., Vacheva, G., Gilev, B. ,"Mathematical Model for Determination of Energy Cycles in EVs", Proceedings of the 2020 24th International Conference Electronics, ELECTRONICS, 2020, 9141569 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Hinov, N., Hranov, T., Gilev, B. ," Comparsion of different methods for controlling DC-DC converters in constant current mode", 2020 21st International Symposium on Electrical Apparatus and Technologies, SIELA 2020 - Proceedings, 9167050 - 2020 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science