Autors: Nikolov, N. D., Sinapov, P. V.
Title: Determination of the internal resistance of a hammer drill chisel
Keywords: free damped oscillations, FEM, Rayleigh damping matrix, damping coefficients

Abstract: The present work examines damped oscillations of a chisel, represented as a distributed parameters system. The system is discretized with the finite element method. Rayleigh’s law is used for the modelling of the resistance. The internal resistance of the mechanical system has been determined by an experiment, then enshrined in the numerical model. Comparison and analysis of the results have been made.


  1. ADHIKARI S., 2001, Damping models for structural vibration, Doctoral dissertation, University of Cambridge, 26-35.
  2. ALIPOUR A., ZAREIAN F., 2008, Study Rayleigh damping in structures; unceratinties and treatments, In Proceedings of 14th World Conference on Earthquake Engineering, Beijing, China.
  3. CHOPRA A.K., 1995, Dynamics of Structures: Theory and Applications to Earthquake Engineering, New Jersey: Prentice Hall, 415.
  4. CHOWDHURY I., DASGUPTA S.P., 2003, Computation of Rayleigh Damping Coefficients for Large Systems, Electronic Journal of Geotechnical Engineering, Volume 8, Bundle C.
  5. CRAIG R.R., KURDILA A.J., 2006, Fundamentals of structural dynamics, John Wiley & Sons, 501-504.
  6. DRESIG H., HOLZWEIßIG F., 2006, Machine dynamics (in German), Springer-Verlag, 52, 417-427.
  7. GENOV J., POLIHRONOV G, KRALOV I., 2007, Vibration of vehicles, TU-Sofia, 25.
  8. KHULIEF Y. A., AL-NASER H., 2005, Finite element dynamic analysis of drillstrings, Finite elements in analysis and design, 41(13), 1270-1288.
  9. MAN L., CORMAN D.G., 1995, Formulation of Rayleigh Damping and its Extensions, Computers & Mirrors, Vol. 57., No. 2., 277-285.
  10. MEVADA H., PATEL D., 2016, Experimental Determination of Structural Damping of Different Materials, Procedia Engineering, 144, 110-115.
  11. RAO S.S., 2004, The finite element method in engineering, Butterworth-Heinemann, 430-431.
  12. REDDY J.N., 1984, An introduction to the finite element method, New York: McGraw-Hill, 123-131.
  13. SANGEETHA N., SATHISH KUMAR P., 2014, A study of vibration analysis for drill string using finite element analysis, IOSR Journal of Mechanical and Civil Engineering, 8, 60-74.
  14. STELZMANN U., GROTH C., MÜLLER G., 2008, FEM for Practitioners Volume 2: Structural Dynamics (in German), Auflage 5, Expert-Verlag, 89-91.
  15. STEVENSON J. D., 1980, Structural damping values as a function of dynamic response stress and deformation levels, Nuclear engineering and design, 60(2), 211-237.
  16. WATKINS D.S., 2004, Fundamentals of Matrix Computations, John Wiley & Sons, 356-371.
  17. YIGIT A. S., CHRISTOFOROU A. P., 1998, Coupled torsional and bending vibrations of drillstrings subject to impact with friction, Journal of Sound and Vibration, 215(1), 167-181.
  18. ZARE J., HASHEMI S. J., RASHED G., 2011, Finite element analysis of drillstring lateral vibration, Scientific Research and Essays, 6(13), 2682-2694.


Journal of Theoretical and Applied Mechanics, vol. 56, issue 1, pp. 169-178, 2018, Poland, ISSN 1429-2955

Цитирания (Citation/s):
1. S. Slavchev, V. Maznichki, O. Krastev, K. Velkov, S. Purgic, Comparative Strength Analysis of the Railway Cantilever, 5th International Conference on Road and Rail Infrastructure CETRA-2018, 17-19 May 2018, Zadar, Croatia. - 2018 - в издания, индексирани в Scopus или Web of Science
2. Adam Kešner, Rostislav Chotěborský, Miloslav Linda, Monika Hromasová, Egidijus Katinas, Hadi Sutanto, Stress distribution on a soil tillage machine frame segment with a chisel shank simulated using discrete element and finite element methods and validate by experiment, September 2021, Biosystems Engineering 209(2):125-138, DOI: 10.1016/j.biosystemseng.2021.06.012 - 2021 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science