Autors: Punov, P. B., Clenci, A., Chiriac, R., Danel, Q., Descombes, G.
Title: Progress in high performance, low emissions, and exergy recovery in internal combustion engines
Keywords: internal combustion engine, energetic performance, pollutant

Abstract: This article first gives a brief review of thermal engines designed for terrestrial transportation since the 1900s. We then outline the main developments in the state of the art and knowledge about internal combustion engines, focusing on the increasingly stringent pollution constraints imposed since the 1990s. The general concept of high-energy performance machines is analyzed from the energy, exergy, and public health point of view and illustrated with typical examples of clean energy production and zero emissions. Whereas the energy analysis revealed high potential of waste heat recovery from both exhaust and cooling system, the exergetic analysis revealed much higher recovery potential from exhaust gases. The exergy content of exhaust gases was observed to be within the range from 10.4% to 20.2% of the fuel energy. The cooling exergy is within the range from 1.2% to 3.4% of the fuel energy.

References

  1. Carnot S. Réflexions sur la puissance motrice du feu, in Fac similé du mémoire de Carnot. Bibliothèque du Cnam. 1824.
  2. Letombe L. Les Moteurs, de l’action de Paroi Dans les Moteurs à Combustion Interne (Editions Baillère). Billière, 1909 Chapitre 9:; 110–127.
  3. Giraud O. Contribution à l’étude de l’isolation Thermique d’un Moteur Suralimenté à Allumage par Compression. 1984.
  4. Chiriac R, Descombes G. Fuel consumption and pollutant emissions reduction for diesel engines by recovery of wasted energy. Environmental Engineering and Management Journal 2010; 9(10):1335–1340.
  5. Rakopoulos CD, Andritsakis EC, Hountalas DT. The influence of the exhaust system unsteady gas flow and insulation on the performance of a turbocharged diesel engine. Heat Recovery Systems and CHP 1995; 15(1):51–72.
  6. Descombes G, Maroteaux F, Feidt M. Study of the interaction between mechanical energy and heat exchanges applied to IC engines. Applied Thermal Engineering 2003; 23(16):2061–2078.
  7. Guilain S. Motorisation diesel, dilemme des émissions de NOx et de CO2 https://www.france-universitenumerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  8. Clenci A. Cycles normatifs de mesure et certification dynamique des émissions de polluants, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  9. Clenci A et al.. Idle operation with low intake valve lift in a port fuel injected engine. Energies 2013; 6(6):2874–2891. doi:10.3390/en6062874.
  10. Clenci AC et al.. A CFD (computational fluid dynamics) study on the effects of operating an engine with low intake valve lift at idle corresponding speed. Energy 2014; 71:202–217.
  11. Gagnepain L. Investissements d’avenir, note stratégique pour la préparation de l’Appel à manifestation d’Intérêt,, N.A. Chaîne de traction et auxiliaires des véhicules à motorisation thermique, Editor. 2011.
  12. Morin C. Combustion dans les moteurs à combustion interne, https://www.france-universite-numeriquemooc.fr/courses/CNAM/01010/session01/about. 2015.
  13. Danlos A. Polluants et dispersion dans l’atmosphère, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  14. Dab W. Impact sanitaire de la pollution atmosphérique et du réchauffement climatique par les transports, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  15. Marly O. Transport diesel industriel, réglementations internationales, https://www.france-universite-numeriquemooc.fr/courses/CNAM/01010/session01/about. 2015.
  16. Chiriac R, Descombes G, Podevin P, Dispositif d’alimentation d’un moteur à combustion interne en gaz enrichi en dihydrogène et en dioxygène. 2012: France.
  17. Chiriac R, Apostolescu N. Emissions of a diesel engine using B20 and effects of hydrogen addition. International Journal of Hydrogen Energy 2013; 38(30): 13453–13462.
  18. Birtas A, Voicu I, Petcu C, Chiriac R, Apostolescu N. The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions. International Journal of Hydrogen Energy 2011; 36(18): 12007–14.
  19. Abedin MJ et al.. Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews 2013; 26:20–33.
  20. Milkov N., Punov, P. B, Evtimov T., Descombes G., Podevin P., 2014,Scientific Conference BulTrans-2014: Energy and exergy analysis of an automotive direct injection diesel engine, Sozopol, Bulgaria, pp. 149-154
  21. Dolz V et al.. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering 2012; 36: 269–278.
  22. Serrano JR et al.. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: evaluation of alternative solutions. Applied Thermal Engineering 2012; 36:279–287.
  23. Liang X et al.. A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. International Journal of Energy Research 2014
  24. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., 2013,BulTrans-2013: Possibilities of waste heat recovery on tractor engines, Sozopol, Bulgaria, pp. 7-15
  25. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., Descombes, G., Evtimov, T., 2015,Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering: Numerical study of the waste heat recovery potential of exhaust gas on a tractor engine, , United Kingdom, pp.
  26. Saidur R et al.. Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews 2012; 16(8):5649–5659.
  27. Descombes G, Boudigues S. Modelling of waste heat recovery for combined heat and power applications. Applied Thermal Engineering 2009; 29(13):2610–2616.
  28. LeBlanc S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies 2014; 1–2:26–35.
  29. Haddad C et al.. Some efficient solutions to recover Low and medium waste heat: competitiveness of the thermoacoustic technology. Energy Procedia 2014;50:1056–1069.
  30. Bert J. Contribution à l’étude de la vaporisation des rejets thermiques : étude et optimisation de moteurs Stirling. 2013, Univ. de Bourgogne.
  31. Touré A. Etude théorique et expérimentale d’un moteur Ericsson à cycle de Joule pour conversion thermodynamique d’énergie solaire ou pour microcogénération. 2010, Univ. de Pau et des Pays de l’Adour.
  32. Stouffs P. Les moteurs à apport de chaleur externe. 10ème Cycle de Conférences CNAM/SIA. 2009.
  33. Thurston RH. In Histoire de la Machine à Vapeur, Decoopman E (ed.). Decoopman, 1882.
  34. Sprouse Iii C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering 2013; 51(1–2):711–722.
  35. Wang T et al.. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews 2011; 15(6): 2862–2871.
  36. Dimitrova Z, Lourdais P, Maréchal F. Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 2015; 86:574–88.
  37. Bianchi M, De Pascale A. Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy 2011; 88(5):1500–1509.
  38. Abusoglu A, Kanoglu M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: part 2–application. Applied Thermal Engineering 2009; 29(2–3):242–249.
  39. Benelmir R, Feidt M. Energy cogeneration systems and energy management strategy. Energy Conversion and Management 1998; 39(16–18):1791–1802.
  40. Kanoglu M, Dincer I. Performance assessment of cogeneration plants. Energy Conversion and Management 2009; 50(1):76–81.
  41. Danel, Q., Perilhon, C., Lacour, S., Punov, P. B, Danlos, A., 2015,Energy Procedia: Waste heat recovery applied to a tractor engine, , Netherlands, pp. 331-343
  42. Glavatskaya Y et al.. Reciprocating expander for an exhaust heat recovery Rankine cycle for a passenger car application. Energies 2012; 5(6):1751–1765.
  43. Dimitrova Z, Maréchal F. Techno-economic design of hybrid electric vehicles using multi objective optimization techniques. Energy 2015; 91:630–44.

Issue

International Journal of Energy Research, vol. 41, issue 9, pp. 1229-1241, 2017, United Kingdom, John Wiley & Sons, Ltd., ISSN 0363-907X

Copyright John Wiley & Sons, Ltd.

Цитирания (Citation/s):
1. Dimitrova, Z., Vehicle propulsion systems design methods, (2017), MATEC Web of Conferences, 133, art. no. 02001 - 2017 - в издания, индексирани в Scopus или Web of Science
2. Calcante, A., Facchinetti, D., Pessina, D., Analysis of hazardous emissions of hand-operated forestry machines fuelled with standard mix or alkylate gasoline, (2018), Croatian Journal of Forest Engineering, 39 (1), pp. 109-116. - 2018 - в издания, индексирани в Scopus или Web of Science
3. Collins, M.D., The Fourier Engine, (2018), IEEE Access, 6, art. no. 8554266, pp. 75048-75051. - 2018 - в издания, индексирани в Scopus или Web of Science
4. Zhao, R., Zhang, H., Song, S., Tian, Y., Yang, Y., Liu, Y., Integrated simulation and control strategy of the diesel engine–organic Rankine cycle (ORC) combined system, (2018), Energy Conversion and Management, 156, pp. 639-654. - 2018 - в издания, индексирани в Scopus или Web of Science
5. Sara, H., Chalet, D., Cormerais, M., Hetet, J.-F., Evaluation of hot water storage strategy in internal combustion engine on different driving cycles using numerical simulations, (2018), Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232 (8), pp. 1019-1035. - 2018 - в издания, индексирани в Scopus или Web of Science
6. Sara, H., Chalet, D., Cormerais, M., Different configurations of exhaust gas heat recovery in internal combustion engine: Evaluation on different driving cycles using numerical simulations, (2018), Journal of Thermal Science and Engineering Applications, 10 (4), art. no. 041010 - 2018 - в издания, индексирани в Scopus или Web of Science
7. Telli, G.D., Altafini, C.R., Rosa, J.S., Costa, C.A., Experimental analysis of a small engine operating on diesel–natural gas and soybean vegetable oil–natural gas, (2018), Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (11), art. no. 547, - 2018 - в издания, индексирани в Scopus или Web of Science
8. Gong, J.W., Li, Y.P., Suo, C., Full-infinite interval two-stage credibility constrained programming for electric power system management by considering carbon emission trading, (2019), International Journal of Electrical Power and Energy Systems, 105, pp. 440-453. - 2019 - в издания, индексирани в Scopus или Web of Science
9. Ma, Z., Du, W., Wang, X., Lv, E., Dong, Y., Shock tube studies on ignition delay and combustion characteristics of oxygenated fuels under high temperature, (2020), International Journal of Energy Research, 44 (13), pp. 10101-10111. - 2020 - в издания, индексирани в Scopus или Web of Science
10. Wang, X., Maeda, N., Meier, D.M., Baiker, A., Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO, (2021), Catalysis Letters - 2021 - в издания, индексирани в Scopus или Web of Science
11. Concli, F., Tooth root bending strength of gears: Dimensional effect for small gears having a module below 5 mm, (2021), Applied Sciences (Switzerland), 11 (5), art. no. 2416 - 2021 - в издания, индексирани в Scopus или Web of Science
12. Telli, G.D., Altafini, C.R., Costa, C.A., Rosa, J.S., Martins, M.E., Oliveira Rocha, L.A., A comprehensive review of homogeneous charge compression ignition (HCCI) engines: Advantages, challenges and evolution, (2021), SAE Technical Papers, (2021) - 2021 - в издания, индексирани в Scopus или Web of Science
13. Falbo, L., Perrone, D., Morrone, P., Algieri, A., Integration of biodiesel internal combustion engines and transcritical organic Rankine cycles for waste-heat recovery in small-scale applications (2021) International Journal of Energy Research - 2021 - в издания, индексирани в Scopus или Web of Science
14. Markov, V., Sa, B., Kamaltdinov, V., Neverov, V., Zherdev, A., Investigation on the effect of the flow passage geometry of diesel injector nozzle on injection process parameters and engine performances (2022) Energy Science and Engineering - 2022 - в издания, индексирани в Scopus или Web of Science
15. Veza, I., Said, M.F.M., Latiff, Z.A., Abas, M.A., Perang, M.R.M., Ng, H.K., Sule, A., Riyadi, T.W.B., Tamaldin, N., Strategies to Form Homogeneous Mixture and Methods to Control Auto-Ignition of HCCI Engine (2021) International Journal of Automotive and Mechanical Engineering, 18 (4), pp. 9253-9270 - 2021 - в издания, индексирани в Scopus или Web of Science
16. Rufino, C. H., Gomes, F. A. F., Gallo, W. L. R., & Ferreira, J. V. Exergetic analysis of the gas exchange processes of a variable displacement engine. Energy Conversion and Management, 263 - 2022 - в издания, индексирани в Scopus или Web of Science
17. Agrebi, S., Dreßler, L., & Nishad, K. The exergy losses analysis in adiabatic combustion systems including the exhaust gas exergy. Entropy, 24(4) - 2022 - в издания, индексирани в Scopus или Web of Science
18. Li M, Li Y, Jiang F, Hu J. An Optimization of a Turbocharger Blade Based on Fluid–Structure Interaction. Process 2022;10(8). - 2022 - в издания, индексирани в Scopus или Web of Science
19. Zhang, X., Wang, X., Cai, J., Wang, R., Bian, X., Yuan, P., Tian, H., Shu, G., Achieving reasonable waste heat utilization in all truck operating conditions via a dual-pressure organic Rankine cycle and its operating strategy (2023) Journal of Cleaner Production, 419, art. no. 138302 - 2023 - в издания, индексирани в Scopus или Web of Science
20. Kornienko, V., Radchenko, R., Korobko, V., Ostapenko, O., Shevchenko, S., Analyzing Exergy Losses When Utilizing the Heat of Exhaust Gases in Boiler (2024), Lecture Notes in Networks and Systems, 1008 LNNS, pp. 476-486. - 2024 - в издания, индексирани в Scopus или Web of Science
21. Rosa, J.S., Smaniotto, M.M., Telli, G.D., Impacts on combustion from the metal oxide nanoparticles use as an additive in biodiesel: Literature review (2024), SAE Technical Papers - 2024 - в издания, индексирани в Scopus или Web of Science
22. Jin, Z., Mi, S., Zhou, D., Zhu, J., Schirru, A., Zhao, W., Qian, Y., Lucchini, T., Lu, X., Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions (2024), Applied Energy, 373, art. no. 123894 - 2024 - в издания, индексирани в Scopus или Web of Science
23. Ping X., Zhang H., Yao B., Zhang M., Wang C., Shi X., STUDY ON COOPERATIVE MATCHING PERFORMANCE OF PUMP IN MARINE BIOMASS DIESEL ENGINE-ORGANIC RANKINE CYCLE COMBINED SYSTEM BASED ON GT-SUITE, (2019), Energy Proceedings, 3 - 2019 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science