Детайли за публикацията
(Publication details)

Autors: Punov, P. B., Clenci, A., Chiriac, R., Danel, Q., Descombes, G.
Title: Progress in high performance, low emissions, and exergy recovery in internal combustion engines
Keywords: internal combustion engine, energetic performance, pollutant emissions, polygeneration

Abstract: This article first gives a brief review of thermal engines designed for terrestrial transportation since the 1900s. We then outline the main developments in the state of the art and knowledge about internal combustion engines, focusing on the increasingly stringent pollution constraints imposed since the 1990s. The general concept of high-energy performance machines is analyzed from the energy, exergy, and public health point of view and illustrated with typical examples of clean energy production and zero emissions. Whereas the energy analysis revealed high potential of waste heat recovery from both exhaust and cooling system, the exergetic analysis revealed much higher recovery potential from exhaust gases. The exergy content of exhaust gases was observed to be within the range from 10.4% to 20.2% of the fuel energy. The cooling exergy is within the range from 1.2% to 3.4% of the fuel energy.

References

  1. Carnot S. Réflexions sur la puissance motrice du feu, in Fac similé du mémoire de Carnot. Bibliothèque du Cnam. 1824.
  2. Letombe L. Les Moteurs, de l’action de Paroi Dans les Moteurs à Combustion Interne (Editions Baillère). Billière, 1909 Chapitre 9:; 110–127.
  3. Giraud O. Contribution à l’étude de l’isolation Thermique d’un Moteur Suralimenté à Allumage par Compression. 1984.
  4. Chiriac R, Descombes G. Fuel consumption and pollutant emissions reduction for diesel engines by recovery of wasted energy. Environmental Engineering and Management Journal 2010; 9(10):1335–1340.
  5. Rakopoulos CD, Andritsakis EC, Hountalas DT. The influence of the exhaust system unsteady gas flow and insulation on the performance of a turbocharged diesel engine. Heat Recovery Systems and CHP 1995; 15(1):51–72.
  6. Descombes G, Maroteaux F, Feidt M. Study of the interaction between mechanical energy and heat exchanges applied to IC engines. Applied Thermal Engineering 2003; 23(16):2061–2078.
  7. Guilain S. Motorisation diesel, dilemme des émissions de NOx et de CO2 https://www.france-universitenumerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  8. Clenci A. Cycles normatifs de mesure et certification dynamique des émissions de polluants, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  9. Clenci A et al.. Idle operation with low intake valve lift in a port fuel injected engine. Energies 2013; 6(6):2874–2891. doi:10.3390/en6062874.
  10. Clenci AC et al.. A CFD (computational fluid dynamics) study on the effects of operating an engine with low intake valve lift at idle corresponding speed. Energy 2014; 71:202–217.
  11. Gagnepain L. Investissements d’avenir, note stratégique pour la préparation de l’Appel à manifestation d’Intérêt,, N.A. Chaîne de traction et auxiliaires des véhicules à motorisation thermique, Editor. 2011.
  12. Morin C. Combustion dans les moteurs à combustion interne, https://www.france-universite-numeriquemooc.fr/courses/CNAM/01010/session01/about. 2015.
  13. Danlos A. Polluants et dispersion dans l’atmosphère, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  14. Dab W. Impact sanitaire de la pollution atmosphérique et du réchauffement climatique par les transports, https://www.france-universite-numerique-mooc.fr/courses/CNAM/01010/session01/about. 2015.
  15. Marly O. Transport diesel industriel, réglementations internationales, https://www.france-universite-numeriquemooc.fr/courses/CNAM/01010/session01/about. 2015.
  16. Chiriac R, Descombes G, Podevin P, Dispositif d’alimentation d’un moteur à combustion interne en gaz enrichi en dihydrogène et en dioxygène. 2012: France.
  17. Chiriac R, Apostolescu N. Emissions of a diesel engine using B20 and effects of hydrogen addition. International Journal of Hydrogen Energy 2013; 38(30): 13453–13462.
  18. Birtas A, Voicu I, Petcu C, Chiriac R, Apostolescu N. The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions. International Journal of Hydrogen Energy 2011; 36(18): 12007–14.
  19. Abedin MJ et al.. Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews 2013; 26:20–33.
  20. Milkov N., Punov, P. B, Evtimov T., Descombes G., Podevin P., 2014,Scientific Conference BulTrans-2014: Energy and exergy analysis of an automotive direct injection diesel engine, Sozopol, Bulgaria, pp. 149-154
  21. Dolz V et al.. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering 2012; 36: 269–278.
  22. Serrano JR et al.. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: evaluation of alternative solutions. Applied Thermal Engineering 2012; 36:279–287.
  23. Liang X et al.. A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. International Journal of Energy Research 2014
  24. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., 2013,BulTrans-2013: Possibilities of waste heat recovery on tractor engines, Sozopol, Bulgaria, pp. 7-15
  25. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., Descombes, G., Evtimov, T., 2015,Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering: Numerical study of the waste heat recovery potential of exhaust gas on a tractor engine, , United Kingdom, pp.
  26. Saidur R et al.. Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews 2012; 16(8):5649–5659.
  27. Descombes G, Boudigues S. Modelling of waste heat recovery for combined heat and power applications. Applied Thermal Engineering 2009; 29(13):2610–2616.
  28. LeBlanc S. Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies 2014; 1–2:26–35.
  29. Haddad C et al.. Some efficient solutions to recover Low and medium waste heat: competitiveness of the thermoacoustic technology. Energy Procedia 2014;50:1056–1069.
  30. Bert J. Contribution à l’étude de la vaporisation des rejets thermiques : étude et optimisation de moteurs Stirling. 2013, Univ. de Bourgogne.
  31. Touré A. Etude théorique et expérimentale d’un moteur Ericsson à cycle de Joule pour conversion thermodynamique d’énergie solaire ou pour microcogénération. 2010, Univ. de Pau et des Pays de l’Adour.
  32. Stouffs P. Les moteurs à apport de chaleur externe. 10ème Cycle de Conférences CNAM/SIA. 2009.
  33. Thurston RH. In Histoire de la Machine à Vapeur, Decoopman E (ed.). Decoopman, 1882.
  34. Sprouse Iii C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering 2013; 51(1–2):711–722.
  35. Wang T et al.. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renewable and Sustainable Energy Reviews 2011; 15(6): 2862–2871.
  36. Dimitrova Z, Lourdais P, Maréchal F. Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain. Energy 2015; 86:574–88.
  37. Bianchi M, De Pascale A. Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy 2011; 88(5):1500–1509.
  38. Abusoglu A, Kanoglu M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: part 2–application. Applied Thermal Engineering 2009; 29(2–3):242–249.
  39. Benelmir R, Feidt M. Energy cogeneration systems and energy management strategy. Energy Conversion and Management 1998; 39(16–18):1791–1802.
  40. Kanoglu M, Dincer I. Performance assessment of cogeneration plants. Energy Conversion and Management 2009; 50(1):76–81.
  41. Danel, Q., Perilhon, C., Lacour, S., Punov, P. B, Danlos, A., 2015,Energy Procedia: Waste heat recovery applied to a tractor engine, , Netherlands, pp. 331-343
  42. Glavatskaya Y et al.. Reciprocating expander for an exhaust heat recovery Rankine cycle for a passenger car application. Energies 2012; 5(6):1751–1765.
  43. Dimitrova Z, Maréchal F. Techno-economic design of hybrid electric vehicles using multi objective optimization techniques. Energy 2015; 91:630–44.

Issue
International Journal of Energy Research, vol. 41, issue 9, pp. 1229-1241, 2017, United Kingdom, John Wiley & Sons, Ltd., ISSN 0363-907X

Copyright John Wiley & Sons, Ltd.

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science

Въведена от: доц. д-р Пламен Борисов Пунов