Autors: Punov, P. B., Clenci, A., Chiriac, R., Danel, Q., Descombes, G. Title: Progress in high performance, low emissions, and exergy recovery in internal combustion engines Keywords: internal combustion engine, energetic performance, pollutant Abstract: This article first gives a brief review of thermal engines designed for terrestrial transportation since the 1900s. We then outline the main developments in the state of the art and knowledge about internal combustion engines, focusing on the increasingly stringent pollution constraints imposed since the 1990s. The general concept of high-energy performance machines is analyzed from the energy, exergy, and public health point of view and illustrated with typical examples of clean energy production and zero emissions. Whereas the energy analysis revealed high potential of waste heat recovery from both exhaust and cooling system, the exergetic analysis revealed much higher recovery potential from exhaust gases. The exergy content of exhaust gases was observed to be within the range from 10.4% to 20.2% of the fuel energy. The cooling exergy is within the range from 1.2% to 3.4% of the fuel energy. References
Issue
Copyright John Wiley & Sons, Ltd. |
Цитирания (Citation/s):
1. Dimitrova, Z., Vehicle propulsion systems design methods, (2017), MATEC Web of Conferences, 133, art. no. 02001 - 2017 - в издания, индексирани в Scopus или Web of Science
2. Calcante, A., Facchinetti, D., Pessina, D., Analysis of hazardous emissions of hand-operated forestry machines fuelled with standard mix or alkylate gasoline, (2018), Croatian Journal of Forest Engineering, 39 (1), pp. 109-116. - 2018 - в издания, индексирани в Scopus или Web of Science
3. Collins, M.D., The Fourier Engine, (2018), IEEE Access, 6, art. no. 8554266, pp. 75048-75051. - 2018 - в издания, индексирани в Scopus или Web of Science
4. Zhao, R., Zhang, H., Song, S., Tian, Y., Yang, Y., Liu, Y., Integrated simulation and control strategy of the diesel engine–organic Rankine cycle (ORC) combined system, (2018), Energy Conversion and Management, 156, pp. 639-654. - 2018 - в издания, индексирани в Scopus или Web of Science
5. Sara, H., Chalet, D., Cormerais, M., Hetet, J.-F., Evaluation of hot water storage strategy in internal combustion engine on different driving cycles using numerical simulations, (2018), Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232 (8), pp. 1019-1035. - 2018 - в издания, индексирани в Scopus или Web of Science
6. Sara, H., Chalet, D., Cormerais, M., Different configurations of exhaust gas heat recovery in internal combustion engine: Evaluation on different driving cycles using numerical simulations, (2018), Journal of Thermal Science and Engineering Applications, 10 (4), art. no. 041010 - 2018 - в издания, индексирани в Scopus или Web of Science
7. Telli, G.D., Altafini, C.R., Rosa, J.S., Costa, C.A., Experimental analysis of a small engine operating on diesel–natural gas and soybean vegetable oil–natural gas, (2018), Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (11), art. no. 547, - 2018 - в издания, индексирани в Scopus или Web of Science
8. Gong, J.W., Li, Y.P., Suo, C., Full-infinite interval two-stage credibility constrained programming for electric power system management by considering carbon emission trading, (2019), International Journal of Electrical Power and Energy Systems, 105, pp. 440-453. - 2019 - в издания, индексирани в Scopus или Web of Science
9. Ma, Z., Du, W., Wang, X., Lv, E., Dong, Y., Shock tube studies on ignition delay and combustion characteristics of oxygenated fuels under high temperature, (2020), International Journal of Energy Research, 44 (13), pp. 10101-10111. - 2020 - в издания, индексирани в Scopus или Web of Science
10. Wang, X., Maeda, N., Meier, D.M., Baiker, A., Bimetallic AuPd@CeO2 Nanoparticles Supported on Potassium Titanate Nanobelts: A Highly Efficient Catalyst for the Reduction of NO with CO, (2021), Catalysis Letters - 2021 - в издания, индексирани в Scopus или Web of Science
11. Concli, F., Tooth root bending strength of gears: Dimensional effect for small gears having a module below 5 mm, (2021), Applied Sciences (Switzerland), 11 (5), art. no. 2416 - 2021 - в издания, индексирани в Scopus или Web of Science
12. Telli, G.D., Altafini, C.R., Costa, C.A., Rosa, J.S., Martins, M.E., Oliveira Rocha, L.A., A comprehensive review of homogeneous charge compression ignition (HCCI) engines: Advantages, challenges and evolution, (2021), SAE Technical Papers, (2021) - 2021 - в издания, индексирани в Scopus или Web of Science
13. Falbo, L., Perrone, D., Morrone, P., Algieri, A., Integration of biodiesel internal combustion engines and transcritical organic Rankine cycles for waste-heat recovery in small-scale applications (2021) International Journal of Energy Research - 2021 - в издания, индексирани в Scopus или Web of Science
14. Markov, V., Sa, B., Kamaltdinov, V., Neverov, V., Zherdev, A., Investigation on the effect of the flow passage geometry of diesel injector nozzle on injection process parameters and engine performances (2022) Energy Science and Engineering - 2022 - в издания, индексирани в Scopus или Web of Science
15. Veza, I., Said, M.F.M., Latiff, Z.A., Abas, M.A., Perang, M.R.M., Ng, H.K., Sule, A., Riyadi, T.W.B., Tamaldin, N., Strategies to Form Homogeneous Mixture and Methods to Control Auto-Ignition of HCCI Engine (2021) International Journal of Automotive and Mechanical Engineering, 18 (4), pp. 9253-9270 - 2021 - в издания, индексирани в Scopus или Web of Science
16. Rufino, C. H., Gomes, F. A. F., Gallo, W. L. R., & Ferreira, J. V. Exergetic analysis of the gas exchange processes of a variable displacement engine. Energy Conversion and Management, 263 - 2022 - в издания, индексирани в Scopus или Web of Science
17. Agrebi, S., Dreßler, L., & Nishad, K. The exergy losses analysis in adiabatic combustion systems including the exhaust gas exergy. Entropy, 24(4) - 2022 - в издания, индексирани в Scopus или Web of Science
18. Li M, Li Y, Jiang F, Hu J. An Optimization of a Turbocharger Blade Based on Fluid–Structure Interaction. Process 2022;10(8). - 2022 - в издания, индексирани в Scopus или Web of Science
19. Zhang, X., Wang, X., Cai, J., Wang, R., Bian, X., Yuan, P., Tian, H., Shu, G., Achieving reasonable waste heat utilization in all truck operating conditions via a dual-pressure organic Rankine cycle and its operating strategy (2023) Journal of Cleaner Production, 419, art. no. 138302 - 2023 - в издания, индексирани в Scopus или Web of Science
20. Kornienko, V., Radchenko, R., Korobko, V., Ostapenko, O., Shevchenko, S., Analyzing Exergy Losses When Utilizing the Heat of Exhaust Gases in Boiler (2024), Lecture Notes in Networks and Systems, 1008 LNNS, pp. 476-486. - 2024 - в издания, индексирани в Scopus или Web of Science
21. Rosa, J.S., Smaniotto, M.M., Telli, G.D., Impacts on combustion from the metal oxide nanoparticles use as an additive in biodiesel: Literature review (2024), SAE Technical Papers - 2024 - в издания, индексирани в Scopus или Web of Science
22. Jin, Z., Mi, S., Zhou, D., Zhu, J., Schirru, A., Zhao, W., Qian, Y., Lucchini, T., Lu, X., Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions (2024), Applied Energy, 373, art. no. 123894 - 2024 - в издания, индексирани в Scopus или Web of Science
23. Ping X., Zhang H., Yao B., Zhang M., Wang C., Shi X., STUDY ON COOPERATIVE MATCHING PERFORMANCE OF PUMP IN MARINE BIOMASS DIESEL ENGINE-ORGANIC RANKINE CYCLE COMBINED SYSTEM BASED ON GT-SUITE, (2019), Energy Proceedings, 3 - 2019 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science