Autors: Danel, Q., Perilhon, C., Lacour, S., Punov, P. B., Danlos, A. Title: Waste heat recovery applied to a tractor engine Keywords: Rankine-Hirn cycle, Simulation, Waste Heat Recovery Abstract: Due to the environmental impact of pollution, the depletion and increasing price of fossil fuel resources, current research focuses on reducing vehicle fuel consumption. The modern agricultural sector is highly dependent on petrol, as no exploitation can work without tractors or agricultural machinery. One solution to reduce the dependence on petrol is to install waste heat recovery systems on engine exhaust gases. Tractors are good candidates for waste heat recovery since they are used at high load over long periods, which are ideal operating conditions for waste heat recovery systems. Several technologies can be used to achieve this aim, such as an external heat engine, thermoelectricity or thermoacoustics. The present study considers the external heat engine, in particular the Rankine-Hirn cycle which is a phase change fluid engine. This well-proven technology is the one most widely used in industry to recover lost heat. References
Issue
Copyright Elsevier Ltd. Full text of the publication |
Цитирания (Citation/s):
1. Xue, L., et al., Agricultural waste. Water Environment Research, 2016. 88(10): p. 1334-1373. - 2016 - в издания, индексирани в Scopus или Web of Science
2. Cipollone R, Di Battista D, Perosino A, Bettoja F. Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles. SAE Technical Papers. 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
3. Punov, P., Evtimov, T., Chiriac, R., Clenci, A., Danel, Q., Descombes, G., Progress in high performance, low emissions, and exergy recovery in internal combustion engines, (2017), International Journal of Energy Research, 41 (9), pp. 1229-1241 - 2017 - в издания, индексирани в Scopus или Web of Science
4. Mohamed, M., Messaoud, L., Zoubir, A., Energetic transition within thermal machines and co-generation: Effect of mass flux on critical heat flux, (2019), Progress in Industrial Ecology, 13 (2), pp. 111-123 - 2019 - в издания, индексирани в Scopus или Web of Science
5. Jing, X., Mingjie, W., Pinglu, C., Muhua, L., Recovering exhaust heat of combine harvester through heat pipe exchanger for drying grain, (2019), INMATEH - Agricultural Engineering, 58 (2), pp. 187-195 - 2019 - в издания, индексирани в Scopus или Web of Science
6. Bai, Y., Zhang, T., Zhai, Y., Shen, X., Ma, X., Zhang, R., Ji, C., Hong, J., Water footprint coupled economic impact assessment for maize production in China, (2021), Science of the Total Environment, 752, art. no. 141963 - 2021 - в издания, индексирани в Scopus или Web of Science
7. Joshi, L.M., Bharti, R.K., Singh, R., Internet of things and machine learning-based approaches in the urban solid waste management: Trends, challenges, and future directions (2021) Expert Systems - 2021 - в издания, индексирани в Scopus или Web of Science
8. Tu, M., Zhang, G., Xia, C., Hu, D., Zeng, R., Zhou, Y., Thermal performance analysis and parameter optimization of a tractor exhaust waste heat plate-fin evaporator (2021) Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 37 (19), pp. 7-17 - 2021 - в издания, индексирани в Scopus или Web of Science
9. Joshi, L. M., Bharti, R. K., & Singh, R. (2022). Internet of things and machine learning-based approaches in the urban solid waste management: Trends, challenges, and future directions. Expert Systems, 39(5) doi:10.1111/exsy.12865 - 2022 - в издания, индексирани в Scopus или Web of Science
10. Pourrahmani, H., Yavarinasab, A., Siavashi, M., Matian, M., Van herle, J., Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods (2022), Energy Reviews, 1 (1), art. no. 100002 - 2022 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science