Autors: Danel, Q., Perilhon, C., Lacour, S., Punov, P. B., Danlos, A.
Title: Waste heat recovery applied to a tractor engine
Keywords: Rankine-Hirn cycle, Simulation, Waste Heat Recovery

Abstract: Due to the environmental impact of pollution, the depletion and increasing price of fossil fuel resources, current research focuses on reducing vehicle fuel consumption. The modern agricultural sector is highly dependent on petrol, as no exploitation can work without tractors or agricultural machinery. One solution to reduce the dependence on petrol is to install waste heat recovery systems on engine exhaust gases. Tractors are good candidates for waste heat recovery since they are used at high load over long periods, which are ideal operating conditions for waste heat recovery systems. Several technologies can be used to achieve this aim, such as an external heat engine, thermoelectricity or thermoacoustics. The present study considers the external heat engine, in particular the Rankine-Hirn cycle which is a phase change fluid engine. This well-proven technology is the one most widely used in industry to recover lost heat.

References

  1. Lacour, S., Burgun, C., Perilhon, C., Descombes, G., & Doyen, V. (2014). A model to assess tractor operational efficiency from bench test data. Journal of Terramechanics, 54, 1–18. doi:10.1016/j.jterra.2014.04.001
  2. Lacour, S., F, M., & Podevin, P. (2012). Récupération d ’ énergie dans les gaz d ' échappement d ' un moteur diesel : Effet des phénomènes transitoires. COFRET’12, Sozopol.
  3. Punov, P. B, Lacour, S., Perilhon, C., Podevin, P., 2013,BulTrans-2013: Possibilities of waste heat recovery on tractor engines, Sozopol, Bulgaria, pp. 7-15
  4. Milkov N., Punov, P. B, Evtimov T., Descombes G., Podevin P., 2014,Scientific Conference BulTrans-2014: Energy and exergy analysis of an automotive direct injection diesel engine, Sozopol, Bulgaria, pp. 149-154
  5. Punov, P. B, Perilhon C., Danel Q., Lacour S., Descombes G., Podevin P., Evtimov T., 2014,Scientific Conference BulTrans-2014: Development of 0D simulational model for Rankine-Hirn cycle heat exchanger optimisation, Sozopol, Bulgaria, pp. 142-148
  6. Bert, J. (2013). Contribution à l’étude de la vaporisation des rejets thermiques : étude et optimisation de moteurs Stirling.
  7. Touré, A. (2010). Etude théorique et expérimentale— d’un moteur Ericsson à cycle ™de Joule pour ™ conversion thermodynamique d'énergie solaire ou pour micro-cogénération.
  8. Stouffs, P. Les moteurs à apport de chaleur externe. 10ème Cycle de Conférences CNAM/SIA, Mars 2009.
  9. Sebastien Bonnet. (2005). Moteurs thermiques à apport de chaleur externe : étude d’un moteur STIRLING et d’un moteur ERICSSON.
  10. LeBlanc, S. (2014). Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies. doi:10.1016/j.susmat.2014.11.002
  11. Haddad, C., Périlhon, C., Danlos, A., François, M.-X., & Descombes, G. (2014). Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology. Energy Procedia, 50, 1056–1069. doi:10.1016/j.egypro.2014.06.125
  12. R.H.Thurston, (1882) Histoire de la machine à vapeur.
  13. Sprouse, C., & Depcik, C. (2013). Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied Thermal Engineering, 51(1-2), 711–722. doi:10.1016/j.applthermaleng.2012.10.017
  14. Bianchi, M., & De Pascale, A. (2011). Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy, 88(5), 1500–1509.
  15. G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, (1995).
  16. Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V., Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source
  17. Quoilin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V., & Spliethoff, H., Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy, (2011).
  18. E Barrieu, J Hergott A, R. (n.d.). Power from Wasted Heat : Challenges and Opportunities of Rankine Based Systems for Passenger Vehicles. In ICE Powertrain Electrification & Energy Recovery, (2013).
  19. Daccord, R., Melis, J., Kientz, T., Darmedru, A., Pireyre, R., Brisseau, N., & Fonteneau, E. (2009). Exhaust Heat Recovery with Rankine piston expander. In ICE Powertrain Electrification & Energy Recovery, (2013).
  20. Espinosa, N., Tilman, L., Lemort, V., Quoilin, S., & Lombard, B., Rankine cycle for waste heat recovery on commercial trucks: approach, constraints and modelling, In ICE Powertrain Electrification & Energy Recovery, (2013).
  21. Maraver, D., Royo, J., Lemort, V., & Quoilin, S. (2014). Systematic optimization of subcritical and transcritical organic Rankine cycles(ORCs) constrained by technical parameters in multiple applications
  22. O. Badr, S. D. Probert, P. W. O., Selecting a working fluid for a Rankine-cycle engine. Applied Energy, (1985).
  23. Liu C., HenC., GaonH., Xun X., & Xu J. (2012). The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat
  24. Chambadal, P. Les centrales nucléaires, Armand Colin (1957).

Issue

Energy Procedia, vol. 74, pp. 331-343, 2015, Netherlands, Elsevier Ltd., ISSN 1876-6102

Copyright Elsevier Ltd.

Full text of the publication

Цитирания (Citation/s):
1. Xue, L., et al., Agricultural waste. Water Environment Research, 2016. 88(10): p. 1334-1373. - 2016 - в издания, индексирани в Scopus или Web of Science
2. Cipollone R, Di Battista D, Perosino A, Bettoja F. Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles. SAE Technical Papers. 2016. - 2016 - в издания, индексирани в Scopus или Web of Science
3. Punov, P., Evtimov, T., Chiriac, R., Clenci, A., Danel, Q., Descombes, G., Progress in high performance, low emissions, and exergy recovery in internal combustion engines, (2017), International Journal of Energy Research, 41 (9), pp. 1229-1241 - 2017 - в издания, индексирани в Scopus или Web of Science
4. Mohamed, M., Messaoud, L., Zoubir, A., Energetic transition within thermal machines and co-generation: Effect of mass flux on critical heat flux, (2019), Progress in Industrial Ecology, 13 (2), pp. 111-123 - 2019 - в издания, индексирани в Scopus или Web of Science
5. Jing, X., Mingjie, W., Pinglu, C., Muhua, L., Recovering exhaust heat of combine harvester through heat pipe exchanger for drying grain, (2019), INMATEH - Agricultural Engineering, 58 (2), pp. 187-195 - 2019 - в издания, индексирани в Scopus или Web of Science
6. Bai, Y., Zhang, T., Zhai, Y., Shen, X., Ma, X., Zhang, R., Ji, C., Hong, J., Water footprint coupled economic impact assessment for maize production in China, (2021), Science of the Total Environment, 752, art. no. 141963 - 2021 - в издания, индексирани в Scopus или Web of Science
7. Joshi, L.M., Bharti, R.K., Singh, R., Internet of things and machine learning-based approaches in the urban solid waste management: Trends, challenges, and future directions (2021) Expert Systems - 2021 - в издания, индексирани в Scopus или Web of Science
8. Tu, M., Zhang, G., Xia, C., Hu, D., Zeng, R., Zhou, Y., Thermal performance analysis and parameter optimization of a tractor exhaust waste heat plate-fin evaporator (2021) Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 37 (19), pp. 7-17 - 2021 - в издания, индексирани в Scopus или Web of Science
9. Joshi, L. M., Bharti, R. K., & Singh, R. (2022). Internet of things and machine learning-based approaches in the urban solid waste management: Trends, challenges, and future directions. Expert Systems, 39(5) doi:10.1111/exsy.12865 - 2022 - в издания, индексирани в Scopus или Web of Science
10. Pourrahmani, H., Yavarinasab, A., Siavashi, M., Matian, M., Van herle, J., Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods (2022), Energy Reviews, 1 (1), art. no. 100002 - 2022 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science