Autors: LAZAROVA, M. K. Title: Efficiency of Parallel Genetic Algorithm for Solving N-Queens Problem on Multicomputer Platform Keywords: N-queens problem, parallel genetic algorithm, island model, Abstract: The paper investigates the efficiency of parallel genetic algorithm for solving N-queens problem on a multicomputer platform. The proposed parallel computational model of the genetic algorithm is based on a parallel algorithmic paradigm of synchronous iterations. Dynamic migration of randomly selected chromosomes in a bidirectional circular model is utilized. The algorithm is implemented using both flat (pure MPI) and hybrid(MPI+OpenMP) programming models.The target parallel multicomputer platform is a cluster of SMPs. Performance profiling and scalability analyses have been made in respect of both the workload (board size) and the size of the parallel system. References Issue
|
Цитирания (Citation/s):
1. Andalon-Garcia, I.R., Chavoya, A., Performance comparison of three topologies of the Island model of a parallel genetic algorithm implementation on a cluster platform, CONIELECOMP 2012 - 22nd International Conference on Electronics Communications and Computing, art. no. 6189871, pp. 1-6, DOI: 10.1109/CONIELECOMP.2012.6189871 - 2012 - в издания, индексирани в Scopus или Web of Science
2. Umbarkar, A. J., and M. S. Joshi, Review of parallel genetic algorithm based on computing paradigm and diversity in search space, ICTACT Journal on Soft Computing, Vol.3, No. 4, pp. 615-622. - 2013 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. Beik, V., Marzbani, H., & Jazar, R., Welding sequence optimisation in the automotive industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 233, No. 17, pp. 5945-5952 - 2019 - в издания, индексирани в Scopus или Web of Science
4. Sathyapriya, S., Stephen, R., & Irudayaraj, V. J., Survey on N-Queen Problem with Genetic Algorithm, International Journal of Computer Sciences and Engineering, Vol. 6, No, 2, pp. 54-59 - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
5. da Silveira, L. A., Soncco-Alvarez, J. L., de Barros, J. B., Llanos, C. H., Ayala-Rincón, M., On the Behavior of Parallel Island Models, Univ. de Brasılia - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
6. Hu, Y., Personalised modelling framework and systems for Gene Data analysis and Biomedical applications, PhD Thesis, Auckland University of Technology - 2010 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
7. Sangeeta, A.B. and Jain, E., Applying Genetic Algorithm on Dynamic Programming Problems, International Journal for Research in Applied Science & Engineering Technology (IJRASET), Vol. 5, No. VI, 2017, ISSN 2321-9653 - 2017 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
8. da Silveira, Lucas A., Jessé B. de Barros, José L. Soncco-Alvarez, T. A. de Lima, C. H. Llanos, and M. Ayala-Rincón, On The Behaviour of Parallel Island Model Genetic Algorithms, Universidade de Brasılia, Tech. Rep - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
9. Riddhi Singhal, K. Divyasri, M. Mallegowda, Serial and Parallel execution of Genetic N Queens Algorithm, Journal For Basic Sciences, Vol. 22, No. 12, pp. 497-501, ISSN: 1006-8341, 2022 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
10. Barros, J., Employment of parameter adaptive techniques to bio-inspired meta-heuristics for mapping real-time applications onto NoC based MPSoCs, niversidade de Brasília, Brasil, PhD Thesis, 2024 - 2024 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
11. Da Silveira, L., T. de Lima, J. de Barros, J. Soncco-Álvarez, C. Llanos, M. Ayala-Rincón, On the behavior of parallel island models. Applied Soft Computing, Vol. 148, 2023, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2023.110880 - 2023 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в национален форум