Autors: Stefanov, B. I., Topalian, Z., Granqvist, C.G., Österlund, L.
Title: Acetaldehyde adsorption and condensation on anatase TiO2: Influence of acetaldehyde dimerization
Keywords: TiO2, Acetaldehyde, Dimer, Adsorption, DFT, FTIR

Abstract: Conversion of acetaldehyde to crotonaldehyde on anatase TiO2 films was studied by in situ Fourier transform infrared (FTIR) spectroscopy and by density functional theory (DFT) calculations. In situ FTIR showed that acetaldehyde adsorption is accompanied by the appearance of a hitherto non-assigned absorption band at 1643 cm−1, which is shown to be due to acetaldehyde dimers. The results were supported by DFT calculations. Vibrational frequencies calculated within a partially relaxed cluster model for molecular acetaldehyde and its dimer, and for the corresponding adsorbed species on the anatase (1 0 1) surface, were in good agreement with experimental results. A kinetic model was constructed based on the combined FTIR and DFT results, and was shown to explain the essential features of the acetaldehyde condensation reaction.

References

    Issue

    Journal of Molecular Catalysis A: Chemical, vol. 381, pp. 77-88, 2014, Netherlands, Elsevier, ISSN 1381-1169

    Цитирания (Citation/s):
    1. Dai, X., Wang, Y., Wang, X., Tong, S., Xie, X. Polarity on adsorption and photocatalytic performances of N-GR/TiO 2 towards gaseous acetaldehyde and ethylene (2019) Applied Surface Science, 485, pp. 255-265 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Wang, C., Hosomi, T., Nagashima, K., Takahashi, T., Zhang, G., Kanai, M., Zeng, H., Mizukami, W., Shioya, N., Shimoaka, T., Tamaoka, T., Yoshida, H., Takeda, S., Yasui, T., Baba, Y., Aoki, Y., Terao, J., Hasegawa, T., Yanagida, T. Rational Method of Monitoring Molecular Transformations on Metal-Oxide Nanowire Surfaces (2019) Nano Letters, 19 (4), pp. 2443-2449 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Melchers, S., Schneider, J., Emeline, A.V., Bahnemann, D.W. Effect of H2O and O2 on the adsorption and degradation of acetaldehyde on anatase surfaces—An in situ ATR-FTIR study (2018) Catalysts, 8 (10), art. no. 417 - 2018 - в издания, индексирани в Scopus или Web of Science
    4. Du, C., Kong, L., Zhanzakova, A., Tong, S., Yang, X., Wang, L., Fu, H., Cheng, T., Chen, J., Zhang, S. Impact of heterogeneous uptake of nitrogen dioxide on the conversion of acetaldehyde on gamma-alumina in the absence and presence of simulated solar irradiation (2018) Atmospheric Environment, 187, pp. 282-291 - 2018 - в издания, индексирани в Scopus или Web of Science
    5. Enesca, A., Yamaguchi, Y., Terashima, C., Fujishima, A., Nakata, K., Duta, A. Enhanced UV–Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination (2017) Journal of Catalysis, 350, pp. 174-181 - 2017 - в издания, индексирани в Scopus или Web of Science
    6. Sun, Z., Kong, L., Ding, X., Du, C., Zhao, X., Chen, J., Fu, H., Yang, X., Cheng, T. The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina (2016) Physical Chemistry Chemical Physics, 18 (14), pp. 9367-9376 - 2016 - в издания, индексирани в Scopus или Web of Science
    7. Jiang, J., Xia, S., Ni, Z., Zhang, L. Adsorption and selective hydrogenation mechanism of crotonaldehyde on Au(111) surface (2016) Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 37 (4), pp. 693-700 - 2016 - в издания, индексирани в Scopus или Web of Science
    8. Zhao, P., Zhu, L. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air (2016) Frontiers of Environmental Science and Engineering, 10 (2), pp. 219-228 - 2016 - в издания, индексирани в Scopus или Web of Science
    9. Kuo, E.-H., Tseng, C.-H., Hsiao, C.-H. The removal efficiency of in-car air cleaners (2016) ACRA 2016 - 8th Asian Conference on Refrigeration and Air-Conditioning - 2016 - в издания, индексирани в Scopus или Web of Science
    10. Karpfen, A. On the potential energy surfaces of dimers formed between trans-glyoxal, trans-acrolein and formaldehyde (2015) Computational and Theoretical Chemistry, 1061, pp. 60-71 - 2015 - в издания, индексирани в Scopus или Web of Science
    11. Batault, F., Thevenet, F., Hequet, V., Rillard, C., Le Coq, L., Locoge, N. Acetaldehyde and acetic acid adsorption on TiO 2 under dry and humid conditions (2015) Chemical Engineering Journal, 264, pp. 197-210 - 2015 - в издания, индексирани в Scopus или Web of Science
    12. Saha, S., Rajput, L., Joseph, S., Mishra, M.K., Ganguly, S., Desiraju, G.R. IR spectroscopy as a probe for C-H⋯X hydrogen bonded supramolecular synthons (2015) CrystEngComm, 17 (6), pp. 1273-1290 - 2015 - в издания, индексирани в Scopus или Web of Science
    13. Sola, A.C., Ramírez de la Piscina, P., Homs, N. Behaviour of Pt/TiO2 catalysts with different morphological and structural characteristics in the photocatalytic conversion of ethanol aqueous solutions (2020) Catalysis Today, 341, pp. 13-20. - 2020 - в издания, индексирани в Scopus или Web of Science
    14. Lusardi, M., Struble, T., Teixeira, A.R., Jensen, K.F. Identifying the roles of acid-base sites in formation pathways of tolualdehydes from acetaldehyde over MgO-based catalysts (2020) Catalysis Science and Technology, 10 (2), pp. 536-548. - 2020 - в издания, индексирани в Scopus или Web of Science
    15. Mirzaei, A., Kim, H.W., Kim, S.S., Neri, G. Nanostructured semiconducting metal oxide gas sensors for acetaldehyde detection (2019) Chemosensors, 7 (4), art. no. 56 - 2019 - в издания, индексирани в Scopus или Web of Science
    16. Mahmood, A., Wang, X., Xie, X., Sun, J. Atomically Dispersed Pt on TiO2 Nanosheets for Catalytic Gaseous Acetaldehyde Abatement (2021) ACS Applied Nano Materials, 4 (4), pp. 3799-3810 - 2021 - в издания, индексирани в Scopus или Web of Science
    17. Pargoletti, E., Rimoldi, L., Meroni, D., Cappelletti, G. Photocatalytic removal of gaseous ethanol, acetaldehyde and acetic acid: from a fundamental approach to real cases (2022) International Materials Reviews DOI: 10.1080/09506608.2021.2017390 - 2022 - в издания, индексирани в Scopus или Web of Science
    18. Oliphant B.E., Rasmussen M., Paz Herrera L., Griffin M.B., Medlin J.W. Aldol condensation of mixed oxygenates on TiO2 (2024) Catalysis Science and Technology, 14 (7), pp. 1911 - 1922. - 2024 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science