Autors: Neshov, N. N., Manolova, A. H. Title: Drowsiness monitoring in real-time based on Supervised Descent Method Keywords: drosiness detection, yawning detection, Supervised Descent M Abstract: With increased work load and unsuitable work shifts to survive in the fast paced world of today, people tend to lose sleep. Irregular sleep patterns and lack of sleep leads to drowsiness and fatigue. Drowsiness is perilous for the driver himself and for other drivers on the road and must be avoided for example by noise alerts in the car. This paper describes a method to detect drowsiness after implementing eye-tracking and mouth shape tracking in real-time. Viola-Jones algorithm is used to detect facial features in real-time. The proposed approach uses the detected facial features (i.e. eyes and mouth) based on Supervised Descent Method to find the blinking rate of a driver as well as for yawning detection. A decision, whether the driver is vigilant or not is then provided. Real time experiments based on publicly available dataset prove that the proposed method is highly efficient in finding the drowsiness and alerting the driver. References Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Soares, G., De Lima, D., Miranda Neto, A., A Mobile Application for Driver's Drowsiness Monitoring based on PERCLOS Estimation, IEEE Latin America Transactions 17(2),8863164, pp. 193-202 - 2019 - в издания, индексирани в Scopus или Web of Science
2. Gupta, S., Mayaluri, L., Panda, N., Gupta, S., Measuring human alertness from histogram of response time to audio-visual stimuli, Chronobiology International 36(10), 2019, pp. 1447-1453 - 2019 - в издания, индексирани в Scopus или Web of Science
3. Joseph, H., Rajan, B.K., Real Time Drowsiness Detection using Viola Jones KLT, Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020 9215255, 2020, pp. 583-588 - 2020 - в издания, индексирани в Scopus или Web of Science
4. Gupta, S., Lazarus, M. Z., & Panda, N. (2020). Human video database for facial feature detection under spectacles with varying alertness levels: a baseline study. Cognitive Computation and Systems, 2(3), 93-104. - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
5. Klaib, A. F., Alsrehin, N. O., Melhem, W. Y., Bashtawi, H. O., & Magableh, A. A. (2020). Eye Tracking Algorithms, Techniques, Tools, and Applications with an Emphasis on Machine Learning and Internet of Things Technologies. Expert Systems with Applications, 114037. - 2020 - в издания, индексирани в Scopus или Web of Science
6. Klaib, A. F., Alsrehin, N. O., Melhem, W. Y., Bashtawi, H. O., & Magableh, A. A. (2021). Eye tracking algorithms, techniques, tools, and applications with an emphasis on machine learning and Internet of Things technologies. Expert Systems with Applications, 166, 114037. - 2021 - в издания, индексирани в Scopus или Web of Science
7. Hussein, M. K., Salman, T. M., Miry, A. H., & Subhi, M. A. (2021, April). Driver Drowsiness Detection Techniques: A Survey. In 2021 1st Babylon International Conference on Information Technology and Science (BICITS) (pp. 45-51). IEEE. - 2021 - в издания, индексирани в Scopus или Web of Science
8. Kao, I. H., & Chan, C. Y. (2022). Comparison of eye and face features on drowsiness analysis. Sensors, 22(17), 6529. - 2022 - в издания, индексирани в Scopus или Web of Science
9. Zou, J., & Zhang, Q. (2022). eyeSay: Brain Visual Dynamics Decoding With Deep Learning & Edge Computing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2217-2224. - 2022 - в издания, индексирани в Scopus или Web of Science
10. Edughele, H. O., Zhang, Y., Muhammad-Sukki, F., Vien, Q. T., Morris-Cafiero, H., & Agyeman, M. O. (2022). Eye-tracking assistive technologies for individuals with amyotrophic lateral sclerosis. IEEE Access, 10, 41952-41972. - 2022 - в издания, индексирани в Scopus или Web of Science
11. Kong, Xianghao, Wanzeng Kong, Qiaonan Fan, Qibin Zhao, and Andrzej Cichocki. "Task-independent eeg identification via low-rank matrix decomposition." In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 412-419. IEEE, 2018. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
12. Dehzangi, Omid, and Selvamani Masilamani. "Unobtrusive driver drowsiness prediction using driving behavior from vehicular sensors." In 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3598-3603. IEEE, 2018. - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
13. Shilaskar, Swati, Tejas J. Lokhande, Gitesh P. Mane, Pratik C. Masani, and Devesh N. Kulkarni. "Embedded System for Driver Drowsiness Detection." In International Conference on Communication and Computational Technologies, pp. 603-611. Singapore: Springer Nature Singapore, 2023. - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
14. 李杰鹏 and 戴前伟, 2022. 基于监督下降法的直流电测深曲线反演. Advances in Geosciences, 12, p.795. - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science