Autors: Pamukov, M. E., Poulkov, V. K. Title: Multiple Negative Selection Algorithm: Improving Detection Error Rates in IoT Intrusion Detection Systems Keywords: Computational Immunology, Negative Selection, NS, Artificial Abstract: The creation of intrusion detection systems for IoT scenarios presents various challenges. One of them being the need for an implementation of unsupervised learning and decision making in the detection syste m. The algorithm presented in this paper is capable of definitively identifying a large percentage of possible intrusions as true or false without the need of operator input. Our proposal is based on the Negative Selection algorithm and the co-stimulation principles of Immunology. It uses a two-tiered negative selection process to implement a co-stimulation approach aimed at decreasing the number of detection errors without the need of an operator input. References Issue
Copyright IEEE Full text of the publication |
Цитирания (Citation/s):
1. Jabbar, M.A., Aluvalu, R., "Intrusion detection system for the internet of things: A review", IET Conference Publications, vol. 2018, no. CP747, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
2. Lyngdoh, J., Kalita, H.K., "An adaptive system for network security based on the human immune system concepts", Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 4 Special Issue, pp. 2564-2572, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
3. Zakariyya, I., Al-Kadri, M.O., Kalutarage, H., Petrovski, A., "Reducing computational cost in IoT cyber security: Case study of artificial immune system algorithm", ICETE 2019 - Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, vol. 2, pp. 523-528, 2019, DOI: 10.5220/0008119205230528. - 2019 - в издания, индексирани в Scopus или Web of Science
4. Pump, R., Ahlers, V., Koschel, A., "State of the Art in Artificial Immune-Based Intrusion Detection Systems for Smart Grids", Proceedings of the 2nd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4 2018, pp. 276-280, 2018, DOI: 10.1109/WorldS4.2018.8611584. - 2018 - в издания, индексирани в Scopus или Web of Science
5. Mostafa, A.M., Yanes, N., Alanazi, S.A., "A cognitive adaptive artificial immunity algorithm for database intrusion detection systems", Journal of Theoretical and Applied Information Technology, vol. 97, no. 16, pp. 4387-4400, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
6. Hanif, S., Ilyas, T., Zeeshan, M., "Intrusion Detection in IoT Using Artificial Neural Networks on UNSW-15 Dataset", HONET-ICT 2019 - IEEE 16th International Conference on Smart Cities: Improving Quality of Life using ICT, IoT and AI, pp. 152-156, 2019, DOI: 10.1109/HONET.2019.8908122. - 2019 - в издания, индексирани в Scopus или Web of Science
7. Said, W., Mostafa, A.M., "Towards a Hybrid Immune Algorithm Based on Danger Theory for Database Security", IEEE Access, vol. 8, pp. 145332-145362, 2020, DOI: 10.1109/ACCESS.2020.3015399. - 2020 - в издания, индексирани в Scopus или Web of Science
8. Aldhaheri, S., Alghazzawi, D., Cheng, L., Barnawi, A., Alzahrani, B.A., "Artificial Immune Systems approaches to secure the internet of things: A systematic review of the literature and recommendations for future research", Journal of Network and Computer Applications, vol. 157, 2020, DOI: 10.1016/j.jnca.2020.102537. - 2020 - в издания, индексирани в Scopus или Web of Science
9. Sharmila, B.S., Nagapadma, R., "KNN classification using multi-core architecture for intrusion detection system", 2nd International Conference on Communication and Computing systems, ICCCS 2018, pp. 46-51, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
10. Thapa, K.N.K., Duraipandian, N., "Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model", Wireless Personal Communications, 2021, DOI: 10.1007/s11277-021-08359-6. - 2021 - в издания, индексирани в Scopus или Web of Science
11. Solani, S., Jadav, N.K., "A novel approach to reduce false-negative alarm rate in network-based intrusion detection system using linear discriminant analysis", Lecture Notes in Networks and Systems, vol. 145, pp. 911-921, 2021, DOI: 10.1007/978-981-15-7345-3_77. - 2021 - в издания, индексирани в Scopus или Web of Science
12. Alrubayyi, H., Goteng, G., Jaber, M., Kelly, J., "A novel negative and positive selection algorithm to detect unknown malware in the IoT", IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021, 2021, DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484483. - 2021 - в издания, индексирани в Scopus или Web of Science
13. Phadke, A., Ustymenko, S., "Updating the taxonomy of intrusion detection systems", 45th IEEE Annual Computers, Software, and Applications Conference, COMPSAC 2021, pp. 1085-1091, 2021, DOI: 10.1109/COMPSAC51774.2021.00148. - 2021 - в издания, индексирани в Scopus или Web of Science
14. Talal, H., Zagrouba, R., "Mads based on dl techniques on the internet of things (Iot): Survey", Electronics (Switzerland), vol. 10, no. 21, 2021, DOI: 10.3390/electronics10212598. - 2021 - в издания, индексирани в Scopus или Web of Science
15. Alrubayyi, H., Goteng, G., Jaber, M., Kelly, J., "Challenges of malware detection in the IoT and a review of artificial immune system approaches", Journal of Sensor and Actuator Networks, vol. 10, no. 4, 2021, DOI: 10.3390/jsan10040061. - 2021 - в издания, индексирани в Scopus или Web of Science
16. Alhasan, S., Abdul-Salaam, G., Bayor, L., Oliver, K., "Intrusion Detection System Based on Artificial Immune System: A Review", Proceedings - 2021 International Conference on Cyber Security and Internet of Things, ICSIoT 2021, pp. 7-14, 2021, DOI: 10.1109/ICSIoT55070.2021.00011. - 2021 - в издания, индексирани в Scopus или Web of Science
17. Adawadkar, A.M.K., Kulkarni, N., "Cyber-security and reinforcement learning — A brief survey", Engineering Applications of Artificial Intelligence, vol. 114, 2022, DOI: 10.1016/j.engappai.2022.105116. - 2022 - в издания, индексирани в Scopus или Web of Science
18. Gupta, K.D., Dasgupta, D., "Negative Selection Algorithm Research and Applications in the Last Decade: A Review", IEEE Transactions on Artificial Intelligence, vol. 3, no. 2, pp. 110-128, 2022, DOI: 10.1109/TAI.2021.3114661. - 2022 - в издания, индексирани в Scopus или Web of Science
19. Huang, Y.-L., Hung, C.-Y., Hu, H.-T., "A Protocol-based Intrusion Detection System using Dual Autoencoders", IEEE International Conference on Software Quality, Reliability and Security, QRS, vol. 2021-December, pp. 749-758, 2021, DOI: 10.1109/QRS54544.2021.00084. - 2021 - в издания, индексирани в Scopus или Web of Science
20. Al-Farhani, L.H., Alqahtani, Y., Alshehri, H.A., Martin, R.J., Lalar, S., Jain, R., "IOT and Blockchain-Based Cloud Model for Secure Data Transmission for Smart City", Security and Communication Networks, vol. 2023, 2023, DOI: 10.1155/2023/3171334. - 2023 - в издания, индексирани в Scopus или Web of Science
21. Alrubayyi H.; Goteng G.; Jaber M., "AIS for Malware Detection in a Realistic IoT System: Challenges and Opportunities", Network, vol. 3, no. 4, pp. 522-537, 2023, DOI: 10.3390/network3040023. - 2023 - в издания, индексирани в Scopus или Web of Science
22. XIAO Z., "MINIMIZING OVERHEAD THROUGH BLOCKCHAIN FOR ESTABLISHING A SECURE SMART CITY WITH IOT MODEL", Scalable Computing, vol. 25, no. 3, pp. 1321-1331, 2024, DOI: 10.12694/SCPE.V25I3.2628. - 2024 - в издания, индексирани в Scopus или Web of Science
Вид: публикация в международен форум, индексирана в Scopus