Autors: Pamukov, M. E., Poulkov, V. K.
Title: Multiple Negative Selection Algorithm: Improving Detection Error Rates in IoT Intrusion Detection Systems
Keywords: Computational Immunology, Negative Selection, NS, Artificial Immune Systems, AIS, Security, IDS, Intrusion Detection System, IoT, Internet of Things, Co-stimulation

Abstract: The creation of intrusion detection systems for IoT scenarios presents various challenges. One of them being the need for an implementation of unsupervised learning and decision making in the detection syste m. The algorithm presented in this paper is capable of definitively identifying a large percentage of possible intrusions as true or false without the need of operator input. Our proposal is based on the Negative Selection algorithm and the co-stimulation principles of Immunology. It uses a two-tiered negative selection process to implement a co-stimulation approach aimed at decreasing the number of detection errors without the need of an operator input.

References

    Issue

    9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2017, Romania,

    Copyright IEEE

    Full text of the publication

    Цитирания (Citation/s):
    1. Jabbar, M.A., Aluvalu, R., "Intrusion detection system for the internet of things: A review", IET Conference Publications, vol. 2018, no. CP747, 2018. - 2018 - в издания, индексирани в Scopus или Web of Science
    2. Lyngdoh, J., Kalita, H.K., "An adaptive system for network security based on the human immune system concepts", Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 4 Special Issue, pp. 2564-2572, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Zakariyya, I., Al-Kadri, M.O., Kalutarage, H., Petrovski, A., "Reducing computational cost in IoT cyber security: Case study of artificial immune system algorithm", ICETE 2019 - Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, vol. 2, pp. 523-528, 2019, DOI: 10.5220/0008119205230528. - 2019 - в издания, индексирани в Scopus или Web of Science
    4. Pump, R., Ahlers, V., Koschel, A., "State of the Art in Artificial Immune-Based Intrusion Detection Systems for Smart Grids", Proceedings of the 2nd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4 2018, pp. 276-280, 2018, DOI: 10.1109/WorldS4.2018.8611584. - 2018 - в издания, индексирани в Scopus или Web of Science
    5. Mostafa, A.M., Yanes, N., Alanazi, S.A., "A cognitive adaptive artificial immunity algorithm for database intrusion detection systems", Journal of Theoretical and Applied Information Technology, vol. 97, no. 16, pp. 4387-4400, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Hanif, S., Ilyas, T., Zeeshan, M., "Intrusion Detection in IoT Using Artificial Neural Networks on UNSW-15 Dataset", HONET-ICT 2019 - IEEE 16th International Conference on Smart Cities: Improving Quality of Life using ICT, IoT and AI, pp. 152-156, 2019, DOI: 10.1109/HONET.2019.8908122. - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Said, W., Mostafa, A.M., "Towards a Hybrid Immune Algorithm Based on Danger Theory for Database Security", IEEE Access, vol. 8, pp. 145332-145362, 2020, DOI: 10.1109/ACCESS.2020.3015399. - 2020 - в издания, индексирани в Scopus или Web of Science
    8. Aldhaheri, S., Alghazzawi, D., Cheng, L., Barnawi, A., Alzahrani, B.A., "Artificial Immune Systems approaches to secure the internet of things: A systematic review of the literature and recommendations for future research", Journal of Network and Computer Applications, vol. 157, 2020, DOI: 10.1016/j.jnca.2020.102537. - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Sharmila, B.S., Nagapadma, R., "KNN classification using multi-core architecture for intrusion detection system", 2nd International Conference on Communication and Computing systems, ICCCS 2018, pp. 46-51, 2019. - 2019 - в издания, индексирани в Scopus или Web of Science
    10. Thapa, K.N.K., Duraipandian, N., "Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model", Wireless Personal Communications, 2021, DOI: 10.1007/s11277-021-08359-6. - 2021 - в издания, индексирани в Scopus или Web of Science
    11. Solani, S., Jadav, N.K., "A novel approach to reduce false-negative alarm rate in network-based intrusion detection system using linear discriminant analysis", Lecture Notes in Networks and Systems, vol. 145, pp. 911-921, 2021, DOI: 10.1007/978-981-15-7345-3_77. - 2021 - в издания, индексирани в Scopus или Web of Science
    12. Alrubayyi, H., Goteng, G., Jaber, M., Kelly, J., "A novel negative and positive selection algorithm to detect unknown malware in the IoT", IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2021, 2021, DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484483. - 2021 - в издания, индексирани в Scopus или Web of Science
    13. Phadke, A., Ustymenko, S., "Updating the taxonomy of intrusion detection systems", 45th IEEE Annual Computers, Software, and Applications Conference, COMPSAC 2021, pp. 1085-1091, 2021, DOI: 10.1109/COMPSAC51774.2021.00148. - 2021 - в издания, индексирани в Scopus или Web of Science
    14. Talal, H., Zagrouba, R., "Mads based on dl techniques on the internet of things (Iot): Survey", Electronics (Switzerland), vol. 10, no. 21, 2021, DOI: 10.3390/electronics10212598. - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Alrubayyi, H., Goteng, G., Jaber, M., Kelly, J., "Challenges of malware detection in the IoT and a review of artificial immune system approaches", Journal of Sensor and Actuator Networks, vol. 10, no. 4, 2021, DOI: 10.3390/jsan10040061. - 2021 - в издания, индексирани в Scopus или Web of Science

    Вид: публикация в международен форум, индексирана в Scopus