Autors: Kralov, I. M., Nedelchev, K. I., Zazpe, A.
Title: Influence of the Support Stiffness of a Vibration Energy Generator upon Its Frequency Response
Keywords: support stiffness, energy harvesting, vibration

Abstract: A numerical investigation of the influence of the support stiffness of a vibration energy harvesting device upon its frequency response is done in this study. The aim is to enlarge the working frequency range of the device. The numerical results are verified by some real device experiments. On the base of the results there are defined useful conclusions for widening of the device frequency range.


  1. A. Aladwani, M. Arafa, O. Aldraihem and A. Baz, “Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier”, Journal of Vibration and Acoustics, Volume 134, Issue 3, 2012.
  2. Hao Wu, Lihua Tang, Yaowen Yang and Chee Kiong Soh, “Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester”, Journal of Intelligent Material Systems and Structures, vol. 25(14), 1875-1889, 2014.
  3. Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan and Tao Xie, “A 2DOF hybid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms”, Journal of Zhejiang University SCIENCE A, Vol.15, No.9, pp. 711-722, 2014.
  4. Hong-yan Wang, Xiao-biao SHAN and Tao XIE, “An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system”, Journal of Zhejiang University SCIENCE A, 2012, Volume 13, Issue 7, pp. 526–537, July 2012.
  5. Kralov, I. M, Terzieva, S. D, Ignatov, I. P., 2011,MECAHITECH‘11: Analysis of methods and MEMS for Acoustic Energy Harvesting with Application in Railway Noise Reduction, Bucharest, Romania, pp. 56-62
  6. Lihua Tang and Yaowen Yang, “A multiple-degree-of-freedom piezoelectric energy harvesting model”, Journal of Intelligent Material Systems and Structures, vol. 23(14), pp.1631-1647, 2012.
  7. M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni, “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems”, Sensors and Actuators A: Physical, 142, pp 329-335, 2008.
  8. M. A. Halim and J. Y. Park, “Performance enhancement of a low frequency vibration driven 2-DOF piezoelectric energy harvester by mechanical impact”, Journal of Physics: Conference Series, Volume 557, 2014.
  9. 10. M. H. Malakooti, B. A. Patterson, Hyun-Sik Hwangb and Henry A. Sodano, “ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting”, Energy Environ. Sci., Volume 9, pp. 634-643, 2016.
  10. Magdy M. Mahmoud, Ahmed M. R. Fath El-Bab, Samy F. M. Assal, “Design Methodology of a Micro-Scale 2-DOF Energy Harvesting Device for Low Frequency and Wide Bandwidth”, Journal of Sensor Technology, 4, 37-47, 2014 (
  11. Miah Abdul Halim, Dae Heum Kim and Jae Yeong Park, “Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth”, Journal of Electrical Engineering and Technology, Volume 11, Issue 3, pp.707-714, 2016.
  12. R. L. Harne, A.Sun, K. W. Wang, “Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system”, Journal of Sound and Vibration, 363, pp. 517-531, 2016.
  13. S. G. Burrow and L. Penrose, “A 2 DOF vibration harvester for broadband and multifrequency harvesting using a single electro-magnetic transducer”, Journal of Physics: Conference Series, Volume 557, 012031, 2014.
  14. Xiudong Tang and Lei Zuo, “Enhanced vibration energy harvesting using dual-mass systems”, Journal of Sound and Vibration, Volume 330, Issue 21, , pp. 5199–5209, 10 October 2011.
  15. Zengtao Yang and Jiashi Yang, “Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power Harvester”, Journal of Intelligent Material Systems and Structures, Volume 20, pp. 569–574, 2009;
  16. A. Erturk, D. Inman, “Piezoelectric Energy Harvesting”, Willey, 2011.
  17. H. Vocca, F. Cottone, “Kinetic Energy Harvesting”, 2014.
  18. I. Caluwé, “Design and validation of piezoelectric energy harvesting systems”, 2011, Vrije Universiteit Brussel.
  19. Tom J. Kazmierski and Steve Beeby “Energy Harvesting Systems - Principles, Modeling and Applications”, Springer, 2011.
  20. D. P. Arnold and T. Nishida, “Dual-mode piezoelectric/magnetic vibrational energy harvester”, U.S. Patent No. US8354778 B2, (15 Jan 2013).
  21. Ken Deng and Kikmet Andic, “Piezoelectric vibration energy harvesting device”, U.S. Patent No. US2005/0134149 A1 (23 Jun 2005).
  22. Lijie Li and G. Ronan, “Piezoelectric energy harvesting device or actuator”, U.S. Patent No. US20140285067 A1, (25 Sep 2014).
  23. Sang Kyun Lee, “Piezoelectric energy harvesting apparatus”, U.S. Patent No. US 8,723,398 B2 (13 May 2014).
  24. Sang Kyun Lee, Moonkeun Kim, “Piezoelectric energy harvesting array and method of manufacturing the same”, U.S. Patent No. US 2013/0313946 A1 (28 Nov. 2013).
  25. Yue Liu, “Energy harvesting device and methods”, U.S. Patent No. US 20070125176 A1 (7 Jun 2007).
  26. A. Erturk, “Electromechanical Modelling of Piezoelectric Energy Harvesters”, Ph. D. thesis, Virginia Polytechnic Institute and State University, 2009
  27. MIDE, “VoltureTM PIEZOELECTRIC ENERGY HARVESTERS”, 2013 (Volture_Datasheet_001-220227.pdf).
  28. F. Cottone, “Introduction to Vibration Energy Harvesting”, NiPS Energy Harvesting Summer School, 2012.
  29. 30. F. Cottone, “Energy Harvesting: introduction”, NiPS Energy Harvesting Summer School, 2015.


AMEE - 2016, vol. 1789, 2016, Bulgaria, AIP-Publishing, ISBN 978-0-7354-1453-2

Copyright American Institute of Physics

Цитирания (Citation/s):
1. M.P. Aleksandrova, T.D. Tsanev, I.M. Pandiev, G.H. Dobrikov. (2020) Study of piezoelectric behaviour of sputtered KNbO3 nanocoatings for flexible energy harvesting. Energy 205, 118068 - 2020 - в издания, индексирани в Scopus или Web of Science

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus