Autors: Aleksandrova, M. P., Nikolay Kurtev., Valentin Videkov., Славка Цанова., Silvia Schintke.
Title: Material alternative to indium-tin oxide for transparent conductive electrode in flexible display and photovoltaic devices
Keywords: flexible solar cell, flexible OLED, transparent conductive e

References

    Issue

    Microelectronic Engineering, issue 145, pp. 112-116, 2015, Albania,

    Цитирания (Citation/s):
    1. Adhesion-increased carbon nanowalls for the electrodes of energy storage systems Choi, H., Kwon, S., Kang, H., Kim, J.H., Choi, W. 2019 Energies 12(24),4759 - 2019 - в издания, индексирани в Scopus или Web of Science
    2. Investigation on the suitability of water/polyethylene glycol solutions for GO layer deposition in GO/Ag/GO films for transparent conducting electrode Makhija, G., Sharma, V., Singh, S., (...), Vyas, R., Sachdev, K. 2019 Applied Nanoscience (Switzerland) 9(8), pp. 1671-1683 - 2019 - в издания, индексирани в Scopus или Web of Science
    3. Flexible graphene-based micro-capacitors using ultrafast laser ablation Wang, C.-P., Chou, C.-P., Wang, P.-C., Chang, T.-L. 2019 Microelectronic Engineering 215,111000 - 2019 - в издания, индексирани в Scopus или Web of Science
    4. AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide Sarma, B., Barman, D., Sarma, B.K. 2019 Applied Surface Science 479, pp. 786-795 , https://www.scopus.com/record/display.uri?eid=2-s2.0-85061840274&origin=resultslist&sort=plf-f&cite=2-s2.0-84926153482&src=s&imp=t&sid=498246ee33bd13e6333511722cce1254&sot=cite&sdt=a&sl=0&relpos=8&citeCnt=24&searchTerm= - 2019 - в издания, индексирани в Scopus или Web of Science
    5. Residual Stress Image Inspections Based on Bending Testing for Flexible Transparent Conducting Substrates by Single-Direction Common-Path Image Interferometry Wen, B.-J., Huang, S.-A. 2019 IEEE Sensors Journal 19(5),8536469, pp. 1701-1709 , https://www.scopus.com/record/display.uri?eid=2-s2.0-85056597968&origin=resultslist&sort=plf-f&src=s&citedAuthorId=35076971000&imp=t&sid=30f4a95e919af2d00341c0c00bb2bce5&sot=cite&sdt=cite&cluster=scopubyr%2c%222019%22%2ct&sl=0&relpos=18&citeCnt=1&searchTerm= - 2019 - в издания, индексирани в Scopus или Web of Science
    6. Investigation of physical properties and surface free energy of produced ITO thin films by TVA technique Elmas, S., Korkmaz, Ş., Pat, S. 2019 Journal of Materials Science: Materials in Electronics, volume 30, pages 8876–8882,https://www.scopus.com/record/display.uri?eid=2-s2.0-85064262931&origin=resultslist&sort=plf-f&src=s&citedAuthorId=35076971000&imp=t&sid=30f4a95e919af2d00341c0c00bb2bce5&sot=cite&sdt=cite&cluster=scopubyr%2c%222019%22%2ct&sl=0&relpos=24&citeCnt=3&searchTerm= - 2019 - в издания, индексирани в Scopus или Web of Science
    7. Kwadwo Mensah-Darkwa, Rita Namoe Tabi, Pawan K. Kahol, and Ram K. Gupta, Graphene for Flexible Photovoltaic Devices, Journal of Solar Energy Research Updates, 2019, 6, 15-24, https://www.zealpress.com/wp-content/uploads/2019/06/JSERU-V6A2-Gupta.pdf - 2019 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    8. The influence of microstructure characteristics on electrical properties in ITO thin film Open Access Yang, C., Yang, J., Han, D., (...), Xu, Y., Qiu, Y. 2020 E3S Web of Conferences 194,01039 - 2020 - в издания, индексирани в Scopus или Web of Science
    9. Vertical alignment of nematic liquid crystals based on spontaneous alignment layer formation between silver nanowire networks and nonionic amphiphiles Open Access Son, S.-R., Lee, J.H. 2020 Crystals 10(10),913, pp. 1-11 - 2020 - в издания, индексирани в Scopus или Web of Science
    10. Improved optoelectronic properties of Gd doped cadmium oxide thin films through optimized film thickness for alternative TCO applications Sakthivel, P., Asaithambi, S., Karuppaiah, M., (...), Hayakawa, Y., Ravi, G. 2020 Journal of Alloys and Compounds 820,153188 - 2020 - в издания, индексирани в Scopus или Web of Science
    11. Microstructure evolution in high density AZO ceramic sputtering target fabricated via multistep sintering Rajabi Kalvani, P., Shapouri, S., Jahangiri, A.R., Jalili, Y.S. 2020 Ceramics International 46(5), pp. 5983-5992 - 2020 - в издания, индексирани в Scopus или Web of Science
    12. Ultra-flat ITO films on mica for high temperature transparent flexible electrodes Bao, S.-Y., Deng, X., Mao, F., (...), Xiang, P.-H., Duan, C.-G. 2020 Ceramics International 46(2), pp. 2268-2272 - 2020 - в издания, индексирани в Scopus или Web of Science
    13. Effect of Sputtering Power on the Optical and Electrical Properties of ITO Films on a Flexible Fluorphlogopite Substrate, Zhu, H., Zhang, H., Zhang, T.-H., (...), Wang, Y.-X., Yang, Z.-S., 2021, Crystal Research and Technology 56(10), 2100060 - 2021 - в издания, индексирани в Scopus или Web of Science
    14. Evolution of structural and optoelectronic properties in fluorine–aluminum co-doped zinc oxide (FAZO) thin films and their application in CZTSSe thin-film solar cells, Jang, S., Jang, J.S., Karade, V., (...), Park, J., Kim, J.H., 2021, Solar Energy Materials and Solar Cells 232, 111342 - 2021 - в издания, индексирани в Scopus или Web of Science
    15. Flexible and adhesive sintered Cu nanomaterials on polyimide substrates prepared by combining Cu nanoparticles and nanowires with polyvinylpyrrolidone, Yokoyama, S., Nozaki, J., Umemoto, Y., (...), Itoh, T., Takahashi, H., 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects 625, 126907 - 2021 - в издания, индексирани в Scopus или Web of Science
    16. Effect of mechanical properties of substrates on flexibility of ag nanowire electrodes under a large number of bending cycles, Yun, T.G., Hwang, B., 2021, Coatings 11(9), 1074 - 2021 - в издания, индексирани в Scopus или Web of Science
    17. Effect of sputtering pressure on the optical and electrical properties of ITO film on fluorphlogopite substrate, Zhang, H., Zhu, H., Zhang, T.-H., (...), Wang, Y.-X., Yang, Z.-S., 2021, Applied Surface Science 559, 149968 - 2021 - в издания, индексирани в Scopus или Web of Science
    18. Work Function Optimization Technology of Indium Tin Oxide Films Zhang, B., Zhang, Z., Guo, X., (...), Yang, L., Zhu, J., 2021, Journal of Harbin Institute of Technology (New Series) 28(4), pp. 33-39 - 2021 - в издания, индексирани в Scopus или Web of Science
    19. Synthesis and optical analyses of fluorine doped tin oxide (SnO2) nanoparticles, Karaman, T., Sherwani, A.U.R., Can, M.M., Shawuti, S., Kaneko, S., 2021, EPJ Applied Physics 95(2), 20402 - 2021 - в издания, индексирани в Scopus или Web of Science
    20. Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications, Yu, S., Liu, X., Dong, H., Wang, X., Li, L., 2021, Ceramics International 47(14), pp. 20379-20386 - 2021 - в издания, индексирани в Scopus или Web of Science
    21. Highly transparent and conducting Al-doped ZnO as a promising material for optoelectronic applications, Raj, R., Gupta, H., Purohit, L.P, 2021, Pramana - Journal of Physics 95(2), 87 - 2021 - в издания, индексирани в Scopus или Web of Science
    22. Effects of the Substrate Heating Temperature on Properties of ITO Films, Wang, X., Zhang, Z., Li, Z., (...), Tang, X., Wang, Y., 2021, Rengong Jingti Xuebao/Journal of Synthetic Crystals 50(5), pp. 858-865 - 2021 - в издания, индексирани в Scopus или Web of Science
    23. Organic-Inorganic Hybrid Structure as a Conductive and Transparent Layer for Energy and Optoelectronic Applications, Sharma, V., Sharma, H., Singh, S.K., (...), Kumari, Y., Sachdev, K., 2021, ACS Applied Electronic Materials 3(4), pp. 1601-1609 - 2021 - в издания, индексирани в Scopus или Web of Science
    24. Effect of wettability of substrate on metal halide perovskite growth, Pylnev, M., Barbisan, A.M., Wei, T.-C., 2021, Applied Surface Science 541, 148559 - 2021 - в издания, индексирани в Scopus или Web of Science
    25. Vikas Sharma, chapter Transparent conducting electrodes based on zinc oxide In book: Nanostructured Zinc Oxide, Synthesis, Properties and Applications Metal Oxides, 2021, Pages 291-318 - 2021 - в издания, индексирани в Scopus или Web of Science
    26. Lu, W., Wang, R., Li, R., Wang, Y., Wang, Q., Qin, Y., . . . Zhang, X. (2022). Stable ultrathin ag electrodes by tailoring the surface of plastic substrates for flexible organic light-emitting devices. ACS Applied Materials and Interfaces, 14(50), 55905-55914. doi:10.1021/acsami.2c18738 - 2022 - в издания, индексирани в Scopus или Web of Science
    27. Yang, Y., Duan, S., & Zhao, H. (2022). Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. Nanoscale, 14(32), 11484-11511. doi:10.1039/d2nr02475f - 2022 - в издания, индексирани в Scopus или Web of Science
    28. Bose, A., Soni, Singh, K., Dubey, P., & Mishra, S. K. (2022). Study of dry sliding wear and corrosion behavior of nanocomposite al-si-N coated steel. Surface and Coatings Technology, 441 doi:10.1016/j.surfcoat.2022.128543 - 2022 - в издания, индексирани в Scopus или Web of Science
    29. Kim, P. K., Chung, S. -., & Ha, T. -. (2022). High-performance transparent heater with ag paste-based nanomesh electrodes. Journal of Micromechanics and Microengineering, 32(6) doi:10.1088/1361-6439/ac69aa - 2022 - в издания, индексирани в Scopus или Web of Science
    30. Gogoi, D., Bhattarai, S., & Das, T. D. (2022). Numerical study of aluminum doped zinc oxide anode based fluorescent bilayer organic light-emitting diode. Materials Today: Proceedings, 67, 280-289. doi:10.1016/j.matpr.2022.08.237 - 2022 - в издания, индексирани в Scopus или Web of Science
    31. Thi, M. T., Kwon, S., Kang, H., Kim, J. -., Yoon, Y. -., & Choi, W. (2022). Growth properties of carbon nanowalls on nickel and titanium interlayers. Molecules, 27(2) doi:10.3390/molecules27020406 - 2022 - в издания, индексирани в Scopus или Web of Science
    32. Thibaut BARON, THESE DE DOCTORAT DE L'UNIVERSITE DE NANTES, Conception et synthèse de colorants sélectifs du proche infrarouge pour des applications en cellules solaires hybrides transparentes et incolores ainsi que pour la production d’hydrogène - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    33. Yuanhang Yang, Rational Design of Flexible and Stretchable Electronics based on 3D Printing, Thesis, Virginia Commonwealth University, 2022 - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    34. X Luo, W Yue, X Yao, Y Cui, A Highly Transparent Chip for Sensing Hydrogen Peroxide, IEEE Sensors Letters, Volume: 6, Issue: 9, Article Sequence Number: 5501204, 2022 - 2022 - в издания, индексирани в Scopus или Web of Science
    35. Miao-Miao Xie, Xing-Zhong Fang, Guo-Fei Chen, Han-Zhou Jiang, Li-Yun Tan, Jun-Nan Shen, Xi-Xi Wang, Lijun Yi, Ji Wang, he Process Optimization of Conductive Polymer Electrodes of AT-cut Quartz Crystal Resonators, October 2022, Conference: 2022 Symposium on Piezoelectricty, Acoustic Waves, and Device Applications, At: Nanjing, China, - 2022 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
    36. Chemically-stable flexible transparent electrode: gold-electrodeposited on embedded silver nanowires, Mostafa Gholami · Fariba Tajabadi · Nima Taghavinia · Alireza Moshfegh, Scientific Reports, 13(1) Oct 2023 - 2023 - в издания, индексирани в Scopus или Web of Science
    37. Łukasz Witczak, Maciej Chrzanowski, Piotr Sitarek, Mateusz Łysień, and Artur Podhorodecki, Flexible Quantum-Dot Light-Emitting Diodes Using Embedded Silver Mesh Transparent Electrodes Manufactured by an Ultraprecise Deposition Method, ACS Omega 2023. - 2023 - в издания, индексирани в Scopus или Web of Science
    38. Comparative Analysis of PEDOT and ITO Under Thermal Bending and Cycling Stresses: Implications for Flexible Solar Cells Hamasha, M.M., Taamneh, N.A., Hamasha, S., (...), Mashaqbeh, S.A., Alzoubi, K. 2023 IEEE Transactions on Device and Materials Reliability 23(3), pp. 404-411 - 2023 - в издания, индексирани в Scopus или Web of Science
    39. Preparation and characterization of crystalline Ba0.5Sr0.5TiO3 thin films on FTO transparent electrodes Dong, H., Zhang, H., He, F., (...), Wei, K., Tan, Q. 2023 Ceramics International 49(15), pp. 25199-25206 - 2023 - в издания, индексирани в Scopus или Web of Science
    40. Lee, J.-H.; Choi, T.-Y.; Cheon, H.-S.; Youn, H.-Y.; Lee, G.-W.; Lee, S.-N.; Kim, H.-K. Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. Metals 2023, 13, 528. - 2023 - в издания, индексирани в Scopus или Web of Science
    41. Improving light trapping abilities of double-textured AZO films via etching seed layers Zhu, J., Hu, D., Wang, Y., Tao, C., Liu, J. 2023 Journal of Modern Optics 70(7), pp. 443-448 - 2023 - в издания, индексирани в Scopus или Web of Science
    42. Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions, Fabrication Methods, and Design Strategies Kumar, S., Seo, Y. 2023 Small Methods Article in Press - 2023 - в издания, индексирани в Scopus или Web of Science
    43. Electrophoretic Deposition of Rochelle Salt Nanocrystals on Aluminum Plate, by Rostislav Rusev, Boriana Tzaneva and George Angelov, Coatings 2023, 13(6), 1074. - 2023 - в издания, индексирани в Scopus или Web of Science

    Вид: статия в списание, публикация в издание с импакт фактор