Autors: Stefanov P., Todorova S., Naydenov A., Tzaneva, B. R., Kolev H., Atanasova G., Stoyanova D., Karakirova Y., Aleksieva K. Title: On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane Keywords: Methane, Catalytic combustion, Pd-Co/alumina, Mars-van Kreve Abstract: The study is focused on the development of highly active and stable catalyst for combustion of methane by varying the Co loading and sequence of Pd–Co deposition onto c-Al2O3. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, electron paramagnetic resonance, TEM and reaction kinetics measurements. The role of the cobalt oxide phase is revealed to stabilize the palladium in oxidized state and to serve as reservoir of oxygen species. The reaction pathway over Pd–Co catalysts proceeds most probably through Mars–van Krevelen mechanism, the water molecules being in competition with the methane molecules for the PdO adsorption sites. Further experiments were carried out to prepare and test samples in the form of structured (monolithic) catalysts, based on anodic alumina and Fe–Cr–Al-alloy carriers, whereupon the composition of the active phase is the same as that of the most promising one, supported on crushed alumina particles. References Issue
|
Цитирания (Citation/s):
1. Zhang, Z., Yuan, W., Deng, J., Tang, Y., Li, Z., Tang, K., Methanol catalytic micro-combustor with pervaporation-based methanol supply system, Chemical Engineering Journal, 283 (2016)982 - 991 - 2016 - в издания, индексирани в Scopus или Web of Science
2. Daniel H. Coller, Brian C. Vicente, Susannah L. Scott, Rapid Extraction of Quantitative Kinetic Information from Variable-Temperature Reaction Profiles, Chem Eng J 303(2016) 182-193 - 2016 - в издания, индексирани в Scopus или Web of Science
3. Wencheng Li , Zixiao Zhanga, Jitong Wang, Wenming Qiao, Donghui Long, Licheng Ling, Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres, Chemical Engineering Journal 293 (2016) 243–251 - 2016 - в издания, индексирани в Scopus или Web of Science
4. S.N.H. Guiance, I.D. Coria, Isabel Irurzun, E.E. Mola, Experimental determination of the activation energies of CH4, SO2 and O2 reactions on Cr2O3/ γ-Al2O3, Chemical Physics Letters, 660 (2016)123-126 - 2016 - в издания, индексирани в Scopus или Web of Science
5. Tianyu Guo, Jianping Du, Jinting Wu, Shuang Wang, Jinping Li, Structure and kinetic investigations of surface-stepped CeO2-supported Pd catalysts for low-concentration methane oxidation, Chemical Eng J 306 (2016)745 - 2016 - в издания, индексирани в Scopus или Web of Science
6. Xie, S., Liu, Y., Deng, J., (...), Han, Z., Dai, H, Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation, Journal of Catalysis, 342 (2016) 17-26 - 2016 - в издания, индексирани в Scopus или Web of Science
7. Mahara, Y., Ohyama, J., Tojo, T., K. Murata, Ishikawa, H., Satsuma, A., Enhanced activity for methane combustion over a Pd/Co/Al2O3 catalyst prepared by a galvanic deposition method, Catalysis Science and Technology, 6 (13) (2016) 4773-4776 - 2016 - в издания, индексирани в Scopus или Web of Science
8. Zhou, W.-Y., Chen, Y., Feng, Y.-F., He, M.-Y., Chen, Q., Vapour-phase condensation of methyl propionate with trioxane over alumina-supported potassium catalyst, Chemical Papers (2016) 70(11), pp. 1471-1478 - 2016 - в издания, индексирани в Scopus или Web of Science
9. Qi, W., Ran, J., Wang, R., Du, X., Shi, J., Niu, J., Zhang, P., Ran, M. "Kinetic Consequences of Methane Combustion on Pd, Pt and Pd-Pt Catalysts." RSC Advances 111 (6) (2016): 109834-109845 - 2016 - в издания, индексирани в Scopus или Web of Science
10. Tianyu Guo, Jianping Du, Jinping Li, The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane, Journal of Materials Science, vol. 51, issue 24 (2016)10917-10925 - 2016 - в издания, индексирани в Scopus или Web of Science
11. Lopez-Gonzalez D, Couble J, Aouine M, Massin L, Mascunan P, Vernoux P, Díez-Ramírez J, Klotz M, Tardivat C, Effect of the Reduction Step on the Catalytic Performance of Pd–CeMO2 Based Catalysts (M = Gd, Zr) for Propane Combustion, Topics in Catalysis, vol. 59, issue 17-18 (2016) 1638-1650 - 2016 - в издания, индексирани в Scopus или Web of Science
12. Ercolino, G., Stelmachowski, P., Grzybek, G., Kotarba, A.,Specchia, S., "Optimization of Pd Catalysts Supported on Co3O4 for Low-Temperature Lean Combustion of Residual Methane." Applied Catalysis B: Environmental 206 (2017): 712-25 - 2017 - в издания, индексирани в Scopus или Web of Science
13. Hu, W., Li, G., Chen, J., Huang, F., Gong, M., Zhong, L., Chen, Y., "Enhancement of Activity and Hydrothermal Stability of Pd/ZrO2-Al2O3 Doped by mg for Methane Combustion Under Lean Conditions." Fuel 194 (2017): 368-74 - 2017 - в издания, индексирани в Scopus или Web of Science
14. Zou, X., Z. Rui, and H. Ji. "Core-Shell NiO/PdO Nanoparticles Supported on Alumina as an Advanced Catalyst for Methane Oxidation." ACS Catalysis 7(3) (2017) 1615-25 - 2017 - в издания, индексирани в Scopus или Web of Science
15. Jodłowski, P.J., Jędrzejczyk, R.J., Chlebda, D., Gierada, M., Łojewska, J., In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface, Journal of Catalysis, 350 (2017) 1-12 - 2017 - в издания, индексирани в Scopus или Web of Science
16. J. Niu, J. Ran, X. Du, W. Qi, P. Zhang, L. Yang, Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study, Molecular Catalysis 434 (2017)206-218 - 2017 - в издания, индексирани в Scopus или Web of Science
17. Mahara, Y., Tojo, T., Murata, K., Ohyama, J., Satsuma, A., Methane combustion over Pd/CoAl2O4/Al2O3catalysts prepared by galvanic deposition, RSC Advances 7(55) (2017) 34530-34537 - 2017 - в издания, индексирани в Scopus или Web of Science
18. Mihai, O., Smedler, G., Nylén, U., Olofsson, M., Olsson, L., The effect of water on methane oxidation over Pd/Al2O3under lean, stoichiometric and rich conditions, Catalysis Science and Technology 7(14)(2017)3084-3096 - 2017 - в издания, индексирани в Scopus или Web of Science
19. W. Hu, G. Li, J. Chen, F. Huang, Y. Wu, S. Yuan, L. Zhong and Y. Chen, Enhanced catalytic performance of a PdO catalyst prepared: Via a two-step method of in situ reduction-oxidation, Chemical Communications 53(45) (2017) 6160-6163 - 2017 - в издания, индексирани в Scopus или Web of Science
20. Banerjee, A.C., McGuire, J.M., Lawnick, O., Bozack, M.J., Low-temperature activity and PdO-PdOx transition in methane combustion by a PdO-PdOx/γ-AL2O3 catalyst, Catalysts 8(7) (2018) 266 - 2018 - в издания, индексирани в Scopus или Web of Science
21. A. Choya, B. Rivas, J.R. González-Velasco, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: Comparison among bulk, Al2O3-supported and Ce-doped catalysts, Applied Catalysis B: Environmental 237 (2018) 844-854 - 2018 - в издания, индексирани в Scopus или Web of Science
22. Y. Mahara, J. Ohyama, K. Sawabe, A. Satsuma, Synthesis of Supported Bimetal Catalysts using Galvanic Deposition Method, Chemical Record 18(2018)1306-1313 - 2018 - в издания, индексирани в Scopus или Web of Science
23. D Shi, J Liu, R Sun, S Ji, SM Rogers, BM Connolly, N. Dimitratos, A.E.H. Wheatley, Preparation of bifunctional Au-Pd/TiO2 catalysts and research on methanol liquid phase one-step oxidation to methyl formate, Catalysis Today, 316,(2018) pp. 206-213 - 2018 - в издания, индексирани в Scopus или Web of Science
24. Choya, A., de Rivas, B., Gutiérrez-Ortiz, J.I. & López-Fonseca, R. 2018, "Effect of residual Na+ on the combustion of methane over Co3O4bulk catalysts prepared by precipitation", Catalysts, 8(10)(2018) 427 - 2018 - в издания, индексирани в Scopus или Web of Science
25. Liu, K., Li, K., Xu, D., Lin, H., Guan, B., Chen, T. & Huang, Z. 2018, "Catalytic Combustion of Lean Methane Assisted by Electric Field over Pd/Co3O4 Catalysts at Low Temperature", Journal of Shanghai Jiaotong University (Science), vol. 23, pp. 8-17 - 2018 - в издания, индексирани в Scopus или Web of Science
26. Zheng, Y., Chen, X., Zheng, Y., Huang, F., Xiao, Y., Cai, G., Zhang, Y. & Jiang, L. 2018, "Catalytic Activity and Stability over Nanorod-Like Ordered Mesoporous Phosphorus-Doped Alumina Supported Palladium Catalysts for Methane Combustion", ACS Catalysis, vol. 8, no. 12, pp. 11016-11028 - 2018 - в издания, индексирани в Scopus или Web of Science
27. Guo, T., Nie, X., Du, J. & Li, J. 2019, "2D feather-shaped alumina slice as efficient Pd catalyst support for oxidation reaction of the low-concentration methane", Chemical Engineering Journal, vol. 361, pp. 1345-1351 - 2019 - в издания, индексирани в Scopus или Web of Science
28. An, L. L., Chen, Y., Shi, J., Cao, J., Liu, B., & Yang, J. (2018). Oxygen reduction activity and stability of composite Pdx/Co-nanofilms/C electrocatalysts in acid and alkaline media. Frontiers in Chemistry, 6(NOV) , doi:10.3389/fchem.2018.00596 - 2018 - в издания, индексирани в Scopus или Web of Science
29. Wang, Z., Zhao, K., Xiao, B., Gao, P., He, D., Cai, T., & Yuan, J. (2019). Fabrication of monolithic catalysts: Comparison of the traditional and the novel green methods. Catalysts, 9(12) doi:10.3390/catal9120981 - 2019 - в издания, индексирани в Scopus или Web of Science
30. Chen, X., Zheng, Y., Chen, Y., Xu, Y., Zhong, F., Zhang, W., . . . Zheng, Y. (2019). Improved methane oxidation activity of P-doped γ-Al2O3 supported palladium catalysts by tailoring the oxygen mobility and electronic properties. International Journal of Hydrogen Energy, 44(51), 27772-27783. doi:10.1016/j.ijhydene.2019.08.237 - 2019 - в издания, индексирани в Scopus или Web of Science
31. Wu, Y., Chen, J., Qu, P., Hu, W., Shen, P., Zhang, G., . . . Chen, Y. (2019). Promotion of yttrium (Y) on the water resistance and hydrothermal stability of Pd/ZrO2 catalyst coated on the monolith for complete methane oxidation. Journal of the Taiwan Institute of Chemical Engineers, 103, 44-56. doi:10.1016/j.jtice.2019.07.002 - 2019 - в издания, индексирани в Scopus или Web of Science
32. Choya, A., de Rivas, B., Gutiérrez-Ortiz, J. I., González-Velasco, J. R., & López-Fonseca, R. (2019). Synthesis, characterization and kinetic behavior of supported cobalt catalysts for oxidative after-treatment of methane lean mixtures. Materials, 12(19) doi:10.3390/ma12193174 - 2019 - в издания, индексирани в Scopus или Web of Science
33. Niu, R., Liu, P., Li, W., Wang, S., & Li, J. (2019). High performance for oxidation of low-concentration methane using ultra-low pd in silicalite-1 zeolite. Microporous and Mesoporous Materials, 284, 235-240 - 2019 - в издания, индексирани в Scopus или Web of Science
34. Li, K., Liu, K., Xu, D., Ni, H., Shen, F., Chen, T., . . . Lin, H. (2019). Lean methane oxidation over Co3O4/Ce0.75Zr0.25 catalysts at low-temperature: Synergetic effect of catalysis and electric field. Chemical Engineering Journal, 369, 660-671. doi:10.1016/j.cej.2019.03.059 - 2019 - в издания, индексирани в Scopus или Web of Science
35. Choya, A., de Rivas, B., González-Velasco, J. R., Gutiérrez-Ortiz, J. I., & López-Fonseca, R. (2019). On the beneficial effect of MgO promoter on the performance of Co3O4/Al2O3 catalysts for combustion of dilute methane. Applied Catalysis A: General, 582 doi:10.1016/j.apcata.2019.05.033 - 2019 - в издания, индексирани в Scopus или Web of Science
36. Liang, Y., Liu, Y., Deng, J., Zhang, K., Hou, Z., Zhao, X., . . . Dai, H. (2019). Coupled palladium-tungsten bimetallic Nanosheets/TiO2 hybrids with enhanced catalytic activity and stability for the oxidative removal of benzene. Environmental Science and Technology, 53(10), 5926-5935. doi:10.1021/acs.est.9b0037 - 2019 - в издания, индексирани в Scopus или Web of Science
37. Banerjee, A. C., Golub, K. W., Hakim, M. A., & Billor, M. Z. (2019). Comparative study of the characteristics and activities of pd/γ-al 2 O 3 catalysts prepared by vortex and incipient wetness methods. Catalysts, 9(4) doi:10.3390/catal9040336 - 2019 - в издания, индексирани в Scopus или Web of Science
38. Chrzan, M., Chlebda, D., Jodłowski, P., Salomon, E., Kołodziej, A., Gancarczyk, A., . . . Łojewska, J. (2019). Towards methane combustion mechanism on metal oxides supported catalysts: Ceria supported palladium catalysts. Topics in Catalysis, 62(1-4), 403-412. doi:10.1007/s11244-019-01143-8 - 2019 - в издания, индексирани в Scopus или Web of Science
39. Shen, J., Hayes, R. E., & Semagina, N. (2019). On the contribution of oxygen from Co3O4 to the pd-catalyzed methane combustion. Catalysis Today, doi:10.1016/j.cattod.2019.12.041 - 2019 - в издания, индексирани в Scopus или Web of Science
40. Ahmad, Y. H., Mohamed, A. T., Mahmoud, K. A., Aljaber, A. S., & Al-Qaradawi, S. Y. (2019). Natural clay-supported palladium catalysts for methane oxidation reaction: Effect of alloying. RSC Advances, 9(56), 32928-32935. doi:10.1039/c9ra06804j - 2019 - в издания, индексирани в Scopus или Web of Science
41. Zhang, Y., Zhu, J., Li, S., Xiao, Y., Zhan, Y., Wang, X., . . . Jiang, L. (2020). Rational design of highly H2O- and CO2-tolerant hydroxyapatite-supported pd catalyst for low-temperature methane combustion. Chemical Engineering Journal, 396 doi:10.1016/j.cej.2020.125225 - 2020 - в издания, индексирани в Scopus или Web of Science
42. Pauletto, G., Vaccari, A., Groppi, G., Bricaud, L., Benito, P., Boffito, D. C., . . . Patience, G. S. (2020). FeCrAl as a catalyst support. Chemical Reviews, 120(15), 7516-7550. doi:10.1021/acs.chemrev.0c00149 - 2020 - в издания, индексирани в Scopus или Web of Science
43. Barrett, W., Nasr, S., Shen, J., Hu, Y., Hayes, R. E., Scott, R. W. J., & Semagina, N. (2020). Strong metal-support interactions in Pd/Co3O4catalyst in wet methane combustion: In situ X-ray absorption study. Catalysis Science and Technology, 10(13), 4229-4236. doi:10.1039/d0cy00465k - 2020 - в издания, индексирани в Scopus или Web of Science
44. Choya, A., de Rivas, B., Gutiérrez-Ortiz, J. I., & López-Fonseca, R. (2020). Comparative study of strategies for enhancing the performance of Co3o4/Al2o3 catalysts for lean methane combustion. Catalysts, 10(7), 1-18. doi:10.3390/catal10070757 - 2020 - в издания, индексирани в Scopus или Web of Science
45. Hu, W., Wu, Y., Chen, J., Qu, P., Zhong, L., & Chen, Y. (2020). Methane combustion with a pd-pt catalyst stabilized by magnesia-alumina spinel in a high-humidity feed. Industrial and Engineering Chemistry Research, 59(24), 11170-11176. doi:10.1021/acs.iecr.0c01362 - 2020 - в издания, индексирани в Scopus или Web of Science
46. Nasr, S., Semagina, N., & Hayes, R. E. (2020). Kinetic modelling of Co3O4- and Pd/Co3O4-catalyzed wet lean methane combustion. Emission Control Science and Technology, 6(2), 269-278. doi:10.1007/s40825-019-00143-0 - 2020 - в издания, индексирани в Scopus или Web of Science
47. Niu, J., Wang, Y., Qi, Y., Dam, A. H., Wang, H., Zhu, Y. -., . . . Chen, D. (2020). New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel, 266 doi:10.1016/j.fuel.2020.117143 - 2020 - в издания, индексирани в Scopus или Web of Science
48. Fang, Q., Jiang, Z., Guo, K., Liu, X., Li, Z., Li, G., & Hu, C. (2020). Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4. Applied Catalysis B: Environmental, 263 doi:10.1016/j.apcatb.2019.118325 - 2020 - в издания, индексирани в Scopus или Web of Science
49. Zhao, G., Pan, X., Zhang, Z., Liu, Y., & Lu, Y. (2020). A thin-felt Pd–MgO–Al2O3/Al-fiber catalyst for catalytic combustion of methane with resistance to water-vapor poisoning. Journal of Catalysis, 384, 122-135. doi:10.1016/j.jcat.2020.01.013 - 2020 - в издания, индексирани в Scopus или Web of Science
50. Lin, J., Chen, Y., Liu, X., Chen, X., Zheng, Y., Huang, F., . . . Jiang, L. (2020). Microstructural property regulation and performance in methane combustion reaction of ordered mesoporous alumina supported palladium-cobalt bimetallic catalysts. Applied Catalysis B: Environmental, 263 doi:10.1016/j.apcatb.2019.118269 - 2020 - в издания, индексирани в Scopus или Web of Science
51. He, L., Fan, Y., Bellettre, J., Yue, J., & Luo, L. (2020). A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 119 doi:10.1016/j.rser.2019.109589 - 2020 - в издания, индексирани в Scopus или Web of Science
52. Hou, M., Zhang, X., Fu, C., Cen, W., & Chen, J. (2020). Effects of a Pd/Pt bimetal supported by a γ-Al2O3 surface on methane activation. Physical Chemistry Chemical Physics, 22(8), 4692-4698. doi:10.1039/c9cp05920b - 2020 - в издания, индексирани в Scopus или Web of Science
53. Choya, A., de Rivas, B., González-Velasco, J. R., Gutiérrez-Ortiz, J. I., & López-Fonseca, R. (2020). Oxidation of lean methane over cobalt catalysts supported on ceria/alumina. Applied Catalysis A: General, 591 doi:10.1016/j.apcata.2019.117381 - 2020 - в издания, индексирани в Scopus или Web of Science
54. Shen, F., Li, K., Zhao, X., Li, X., Chen, T., Zhan, R., . . . Lin, H. (2020). Low temperature oxidation of benzene over Pd/Co3O4 catalysts in the electric field. Catalysis Letters, doi:10.1007/s10562-020-03230-y - 2020 - в издания, индексирани в Scopus или Web of Science
55. Chuah, X. -., Hsieh, C. -., Huang, C. -., Senthil Raja, D., Lin, H. -., & Lu, S. -. (2019). In-situ grown, passivator-modulated anodization derived synergistically well-mixed ni-fe oxides from ni foam as high-performance oxygen evolution reaction electrocatalyst. ACS Applied Energy Materials, 2(1), 743-753. doi:10.1021/acsaem.8b01794 - 2020 - в издания, индексирани в Scopus или Web of Science
56. Rybakov, A. A., Bryukhanov, I. A., & Larin, A. V. (2020). Spatial and magnetic factors for CH4 oxidation on pd slabs in the presence of transition-metal me cations exchanged in γ-Al2O3 support or MeAl2O4 spinels, me = ni, co, mn. Journal of Physical Chemistry C, 124(1), 605-615. doi:10.1021/acs.jpcc.9b09400 - 2021 - в издания, индексирани в Scopus или Web of Science
57. Choya, A., Gudyka, S., de Rivas, B., Gutiérrez-Ortiz, J. I., Kotarba, A., & chlorLópez-Fonseca, R. (2021). Design, characterization and evaluation of ce-modified cobalt catalysts supported on alpha alumina in the abatement of methane emissions from natural gas engines. Applied Catalysis A: General, 617 doi:10.1016/j.apcata.2021.118105 - 2021 - в издания, индексирани в Scopus или Web of Science
58. Gong, X., Guo, S., Jiang, Z., Yang, B., & Fang, T. (2021). Tuning the alloy degree for pd-M/Al2O3 (M=Co/ ni /Cu) bimetallic catalysts to enhance the activity and selectivity of dodecahydro-N-ethylcarbazole dehydrogenation. International Journal of Hydrogen Energy, 46(68), 33835-33848. doi:10.1016/j.ijhydene.2021.07.190 - 2021 - в издания, индексирани в Scopus или Web of Science
59. Khan, H. A., Hao, J., Tall, O. E., & Farooq, A. (2021). Yttrium stabilization and pt addition to Pd/ZrO2catalyst for the oxidation of methane in the presence of ethylene and water. RSC Advances, 11(20), 11910-11917. doi:10.1039/d0ra10773e - 2021 - в издания, индексирани в Scopus или Web of Science
60. Neuberg, S., Pennemann, H., Shanmugam, V., Zapf, R., & Kolb, G. (2021). Promoting effect of rh on the activity and stability of pt-based methane combustion catalyst in microreactors. Catalysis Communications, 149 doi:10.1016/j.catcom.2020.106202 - 2021 - в издания, индексирани в Scopus или Web of Science
61. Pisal, D. S., & Yadav, G. D. (2021). Production of biofuel 2,5-dimethylfuran using highly efficient single-step selective hydrogenation of 5-hydroxymethylfurfural over novel pd-Co/Al-zr mixed oxide catalyst. Fuel, 290 doi:10.1016/j.fuel.2020.119947 - 2021 - в издания, индексирани в Scopus или Web of Science
62. Qi, Y., Li, C., Li, H., Yang, H., & Guan, J. (2021). Elimination or removal of ethylene for fruit and vegetable storage via low-temperature catalytic oxidation. Journal of Agricultural and Food Chemistry, 69(36), 10419-10439. doi:10.1021/acs.jafc.1c02868 - 2021 - в издания, индексирани в Scopus или Web of Science
63. Shen, J., Hayes, R. E., & Semagina, N. (2021). On the contribution of oxygen from Co3O4 to the pd-catalyzed methane combustion. Catalysis Today, 360, 435-443. doi:10.1016/j.cattod.2019.12.041 - 2021 - в издания, индексирани в Scopus или Web of Science
64. Tang, X., Lou, Y., Zhao, R., Tang, B., Guo, W., Guo, Y., . . . Guo, Y. (2021). Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chemical Engineering Journal, 418 doi:10.1016/j.cej.2021.129398 - 2021 - в издания, индексирани в Scopus или Web of Science
65. Xie, J., Wang, H., Yang, J., Tang, C., Dai, Y., & An, N. (2021). Preparation of a novel ru-based catalyst and its performance in the hydrogenation of 2-ethylanthraquinone. [新型Ru基催化剂的制备及其2-乙基蒽醌加氢性能] Huagong Jinzhan/Chemical Industry and Engineering Progress, 40(2), 901-907. doi:10.16085/j.issn.1000-6613.2020-0599 - 2021 - в издания, индексирани в Scopus или Web of Science
66. Xu, Y., Chen, X., Wang, Z., Fan, S., Zhang, W., Liu, H., & Zheng, Y. (2021). Effects of binary Co–Mn oxides promoters on low-temperature catalytic performance of Pd/Al2O3 for methane combustion. International Journal of Hydrogen Energy, 46(29), 15526-15538. doi:10.1016/j.ijhydene.2021.02.110 - 2021 - в издания, индексирани в Scopus или Web of Science
67. Zhang, X., Dai, L., Liu, Y., Deng, J., Jing, L., Wang, Z., . . . Dai, H. (2021). Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Applied Catalysis B: Environmental, 285 doi:10.1016/j.apcatb.2020.119804 - 2021 - в издания, индексирани в Scopus или Web of Science
68. Choya, A., de Rivas, B., Gutiérrez-Ortiz, J.I. & López-Fonseca, R. 2022, "Bulk Co3O4 for Methane Oxidation: Effect of the Synthesis Route on Physico-Chemical Properties and Catalytic Performance", Catalysts 2022, 12(1), 87; https://doi.org/10.3390/catal12010087 - 2022 - в издания, индексирани в Scopus или Web of Science
69. Choya, A., De Rivas, B., Gutiérrez-Ortiz, J.I. & López-Fonseca, R. 2022, "On the Effect of the Synthesis Route of the Support in Co3O4/CeO2Catalysts for the Complete Oxidation of Methane", Industrial and Engineering Chemistry Research, vol. 61, no. 49, pp. 17854-17865. - 2022 - в издания, индексирани в Scopus или Web of Science
70. Choya, A., Gudyka, S., de Rivas, B., Gutiérrez-Ortiz, J.I., Kotarba, A. & López-Fonseca, R. 2022, "Novel Ce-modified cobalt catalysts supported over α-Al2O3 open cell foams for lean methane oxidation", Applied Catalysis A: General, vol. 632, 118511. - 2022 - в издания, индексирани в Scopus или Web of Science
71. Cui, C., Zhang, Y., Shan, W., Yu, Y. & He, H. 2022, "Influence of NOx on the activity of Pd/θ-Al2O3 catalyst for methane oxidation: Alleviation of transient deactivation", Journal of Environmental Sciences (China), vol. 112, pp. 38-47. - 2022 - в издания, индексирани в Scopus или Web of Science
72. Feng, X., Jiang, L., Li, D., Tian, S., Zhu, X., Wang, H., He, C. & Li, K. 2022, "Progress and key challenges in catalytic combustion of lean methane", Journal of Energy Chemistry, vol. 75, pp. 173-215. - 2022 - в издания, индексирани в Scopus или Web of Science
73. Gong, X., Li, L. & Jiang, Z. "Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier", Huagong Xuebao/CIESC Journal, vol. 73 (10) (2022) pp. 4448-4460 - 2022 - в издания, индексирани в Scopus или Web of Science
74. Kuterasiński, Ł., Kurowski, G., Jeleń, P., Sitarz, M. & Jodłowski, P.J. 2022, "Spectroscopic and microscopic studies of Co, Ce, and Pd containing gamma-alumina as catalysts for cyclohexene oxidation", Journal of Molecular Structure, vol. 1261, 132880. - 2022 - в издания, индексирани в Scopus или Web of Science
75. Osuga, R., Neya, A., Yoshida, M., Yabushita, M., Yasuda, S., Maki, S., Kanie, K., Yokoi, T. & Muramatsu, A. 2022, "Improvement of Catalytic Activity of Ce-MFI-Supported Pd Catalysts for Low-Temperature Methane Oxidation by Creation of Concerted Active Sites", Industrial and Engineering Chemistry Research, vol. 61, no. 27, pp. 9686-9694. - 2022 - в издания, индексирани в Scopus или Web of Science
76. Zhang, X., Liu, Y., Deng, J., Jing, L., Wu, L. & Dai, H. 2022, "Catalytic performance and SO2 resistance of zirconia-supported platinum-palladium bimetallic nanoparticles for methane combustion", Catalysis Today, vol. 402, pp. 138-148 - 2022 - в издания, индексирани в Scopus или Web of Science
77. Liang, X., Liu, N., Shi, L., & Meng, X. (2022). Application of supported Cu–Ru catalysts for the removal of trace olefins in aromatics. Clay Minerals, 1-10. doi:10.1180/clm.2022.23 - 2022 - в издания, индексирани в Scopus или Web of Science
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus