Autors: Nedelchev, K. I., Kralov, I. M., Gieva, E. E., Ruskova, I. N., Rusanov, R. V.
Title: INVESTIGATION OF THE INFLUENCE OF THE CROSS-SECTIONAL SHAPE OF REACTIVE – TYPE MUFFLER ON THE NOISE REDUCTION EFFECT
Keywords: acoustic noise, COMS, modelling, muffler, reactive type mufflers

Abstract: In this paper, the influence of the cross-sectional area format of a resonator-type muffler on the noise reduction performance is investigated. The study is implemented in the frequency range from 50 to 4500 Hz. Only resonant type mufflers are investigated. The variation of sound pressure level at the output of the muffler is investigated over the one-third octave band. The aim of the study is to determine the influence of the geometrical shape of the muffler cross-section on its acoustic characteristics. Mufflers with ten simple geometrical cross-section shapes were investigated. The tested mufflers have equal cross-sectional areas and equal lengths (volumes). The inlet and outlet pipes are coaxial. Based on the study, the most effective cross section of a muffler of resonant type is determined. The results are analysed, and appropriate conclusions are drawn.

References

  1. O. HONG et al.: Understanding and Preventing Noise-induced Hearing Loss. Dis Mon, 59 (4), 110-118 (2013).
  2. S. BANOV, I. KRALOV: Noise in Transport Equipment. TU-Sofia, Bulgaria, 2021.
  3. I. ANGELOV, V. OVCHAROV: Vibrations and Noise in Transport Equipment. Technique, Bulgaria, 1985.
  4. D. POTENTE: General Design Principles for an Automotive muffler. In: Proceedings of the ACOUSTICS; Australian Acoustical Society, Busselton, Australia, 2005, 153–158.
  5. S. PANIGRAHI, M. MUNJAL: Combination Mufflers-Theory and Parametric Study. Noise Control Eng J, 53, 247–255 (2005).
  6. COMSOL Multiphysics Application Library, Absorptive Muffler, Created in COMSOL Mul-tiphysics 6.2, 2021.
  7. P. SHIRODE, A. LOKHANDE, A. SHETE, D. MOHITE, M. KULKARNI: Effect of Baffle Placement on Transmission Loss of Single Expansion Chamber Reactive Muffler. International Journal of Research and Analytical Reviews (IJRAR), 9 (2), (2022).
  8. T. SONKULE at al.: Design and Analysis of Reactive Muffler for Enhancement in Transmission Loss. International Journal of Re-search and Analytical Reviews (IJRAR), 8 (2), (2021).
  9. S. DAS, DAS SAIKAT, K. MONDAL (Das) et al.: A Novel Design for Muffler Chambers by Incorporating Baffle Plate. Appl Acoust, 197, (2022).
  10. C. JAGATH, C. SUDHEESH KUMAR: General Design Principles of Reactive Mufflers: a Review. In: Proceedings of the International Conference on Systems, Energy and Environment 2022 (ICSEE 2022), 1–7, 2022.
  11. Y. HWANG, J. LEE, S. KIM: New Active Muffler System Utilizing Destructive Interference by Difference of Transmission Paths. J Sound Vib, 262 (1), 175–186 (2003).
  12. J. KRUEGER, F. CASTOR: Active Muffler for an Exhaust System. Patent US 7,533,759 B2, 2009.
  13. Z. L. JI: Boundary Element Analysis of a Straight-through Hybrid Silencer. J Sound Vib, 292, 415–423 (2006).
  14. M. SAADABADI, M. SAMIMI, H. HOSSEINLAGHAB: Organized Computational Measurement to Design a High-performance Muffler. MDPI, Metrology, 3, (2023).
  15. M. KULKARNI, R. INGLE: Finite Element Analysis of Double Expansion Chamber Reactive Muffler with Side Outlet. Int J Res Anal Rev, 5 (4), 758–764 (Oct.–Dec. 2018).
  16. M. PATNE et al.: Numerical Analysis on Improving Transmission Loss of Reactive Muffler Using Various Sound Absorptive Materials. Mater Sci Eng, 993 (IOP Publishing), 2020.
  17. Z. H. WANG, C. K. HUI, C. F. NG: The Acoustic Performance of Ventilated Window with Quarter-wave Resonators and Membrane Absorber. Appl Acoust, 78, 1–6 (2014).
  18. X. YU, LI CHENG: Duct Noise Attenuation Using Reactive Silencer with Various Internal Configurations. J Sound Vib, 335, 229–244 (2015).
  19. YU XIANG, Y. TONG, J. PAN, LI CHENG: Sub-chamber Optimization for Silencer Design. J Sound Vib, 351, 57–67 (2015).
  20. A. ELSAYED, C. BASTIEN, S. JONES et al.: Investigation of Baffle Configuration Effect on the Performance of Exhaust Mufflers. Case Stud Therm Eng, 10, 86–94 (2017).
  21. S. KAMARKHANI, A. KOHAN: Muffler Design with Baffle Effect and Performations on Transmission Loss. Mech Mech Eng, 22 (4), 1337–1343 (December 2018).
  22. M. JOKANDAN, A. VARIANI, S. AHMADI: Study of Acoustic and Aerodynamic Performance of Reactive Silencer with Different Configurations: Theoretical, Modeling and Experimental. Heliyon, 9 (9), (2023).
  23. S. BARUAH, S. CHATTERJEE: CFD Analysis on an Elliptical Chamber Muffler of a C.I. Engine. International Information and Engineering Technology Association, 37 (2), 613–619 (2019).
  24. R. AMUAKU, E. ASANTE, A. EDWARD, B. GYAMFI: Effects of Chamber Perforations, Inlet and Outlet Pipe Diameter Variations on Transmission Loss Characteristics of a Muffler Using Comsol Multiphysics. Appl Sci, 4, 104 (2019).
  25. F. TERASHIMA, K. FONSECA DE LIMA, N. BARBIERI, R. BARBIERI, N.L. FILHO: A Two-dimensional Finite Element Approach to Evaluate the Sound Transmission Loss in Perforated Silencers. Appl Acoust, 192, (2022).
  26. E. MILAD, M. JOLGAF: Acoustic Analysis of a Perforated-pipe Muffler Using ANSYS. University Bulletin, 4 (19), (2017).
  27. W. ZHANG, F. XIN: Broadband Low-frequency Sound Absorption via Helmholtz Resonators with Porous Material Lining. J Sound Vib, 578, (2024).
  28. U. KALITA, S. MANPREET: Acoustic Performance Analysis of Muffler by Varying Sound Absorption Materials. Mater Today: Proceedings, (2023).
  29. J. COULON, N. ATALLA, A. DESROCHERS: Optimization of Concentric Array Resonators for Wide Band Noise Reduction. Appl Acoust, 113 (1), 109–115 (2016).
  30. CH. BRICAULT, Y. MENG, S. GOUDÉ: Optimization of a Silencer Design Using an Helmholtz Resonators Array in Grazing Incident Waves for Broadband Noise Reduction. Appl Acoust, 201, (2022).
  31. J. DANDSENA, D. P. JENA: Acoustic Attenuation and Effective Properties of Single and Periodic Helmholtz Resonators Having Porous Core. Appl Acoust, 211, (August 2023).
  32. X. YANG, X. SHEN, F. YANG et al.: Acoustic Metamaterials of Modular Nested Helmholtz Resonators with Multiple Tunable Absorption Peaks. Appl Acoust, 213, (2023).
  33. DA-YOUNG KIM, JEONG-GUON IH, MATS ÅBOM: Virtual Herschel-Quincke Tube Using the Multiple Small Resonators and Acoustic Metamaterials. J Sound Vib, 466, (2020).
  34. M. CERVENKA, M. BEDNARÍK: Optimized Compact Wideband Reactive Silencers with An-nular Resonators. J Sound Vib, 484, (2020).
  35. T. BRAVO, MAURY C´EDRIC: Broadband Sound Attenuation and Absorption by Duct Silencers Based on the Acoustic Black Hole Effect: Simulations and Experiments. J Sound Vib, 561, (2023).
  36. A. N. BYUNG HUN, JIN WOO LEE: Metamaterial-based Muffler with Broadband Tunability in a Limited Space: Optimal Design, Theoretical Investigation and Experiment. Int J Mech Sci, 205, (2021).
  37. S-S. LEE, J-Y. JANG, K. SONG: Enhanced Acoustic Attenuation in a Coiled Meta-silencer: Broadband Low-frequency Noise Control through Rainbow Trapping. Mech Syst Signal Process, 222, (2025).
  38. WOJCIECH ŁAPKA: A Three-dimensional Finite Element Analysis of Tuning the Selected Acoustic Helicoidal Resonator by the Change of Its Mandrel Diameter. Appl Acoust, 185, (2022).
  39. T. BRAVO, MAURY C´EDRIC: Converging Rainbow Trapping Silencers for Broadband Sound Dissipation in a Low-speed Ducted Flow. J Sound Vib, 589, (2024).
  40. J. HUANG et al.: Intelligent Device for Harvesting the Vibration Energy of the Automobile Exhaust with a Piezoelectric Generator. Micromachines, 14 (2), (2023).
  41. I. KRALOV, S. TERZIEVA, I. IGNATOV: Analysis of Methods and MEMS for Acoustic Energy Harvesting with Application in Railway Noise Reduction. In: Proceedings of the MECA-HITECH’11, Bucharest, 2011, Vol. 3, 56–62.
  42. P. FAN, SH. WANG, X. WANG: A High-performance Conical-neck Helmholtz Resonator-based Piezoelectric Self-powered System for Urban Transportation. Appl Acoust, 220, (2024).
  43. M. YUAN, Z. CAO, J. LUO, X. CHOU: Recent Developments of Acoustic Energy Harvesting: a Review. Micromachines, 10, 48 (2019).
  44. L. XIANG, C. WANG, Y. ZHANG et al.: Extra Sound Attenuation via Shunted Piezoelectric Resonators in a Duct. Int J Mech Sci, 22, (2022).
  45. El Y. CHAMI, Z. PEZESHKI, S. MOHAMED, B. SAFAEI: Enhanced Acoustic Attenuation Performance of a Novel Absorptive Muffler: a Helmholtz Equation-based Simulation Study. J Eng Manag Syst Eng, 3 (1), 53–64 (2024).
  46. G. FUSARO, D’AURIA, D. D’ORAZIO: Multiphysical Numerical Analysis for Acoustic Metamaterials in Ventilated Ducts. In: Proceedings of the Internoise, Chiba, Japan, 2023, 7–8, DOI: 10.3397/IN_2023_0699.
  47. H. TIJDEMAN: On the Propagation of Sound Waves in Cylindrical Tubes. J Sound Vib, 39 (1), 1–33 (1975). DOI: 10.1016/S0022-460X(75)80206-9.
  48. M. CINGOLANI, G. FUSARO, G. FRATONI, M. GARAI: Influence of Thermal Deformations on Sound Absorption of Three-dimensional Printed Metamaterials. J Acoust Soc Am, 151 (6), 3770–3779 (2022). DOI: 10.1121/10.0011552.
  49. S. MARBURG, B. NOLTE: Computational Acoustics of Noise Propagation in Fluids: Finite and Boundary Element Methods. Springer, New York, 2008, Vol. 578. DOI: 10.1007/978-3-540-77448-8_18.
  50. M. L. MUNJAL: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design. Wiley, New York, 1987, 58–60.
  51. S. G ERGES at al.: Muffler Modeling by Transfer Matrix Method and Experimental Verification. J Acoust Soc Am, 27 (2), 132–140 (2005).

Issue

Journal of Environmental Protection and Ecology, vol. 26, pp. 2656-2669, 2025, Albania, ISSN 13115065

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus