Autors: Todorov, G. D., Todorov, T. S., Kamberov, K. H., Lo Sciuto G. Title: Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System Keywords: electrolyzer, energy consumption, fuel cell, heat exchange balance, reversibleAbstract: Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper, thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this, different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery. References - Yan Z. Hitt J.L. Turner J.A. Mallouk T.E. Renewable electricity storage using electrolysis Proc. Natl. Acad. Sci. USA 2020 117 12558 12563 10.1073/pnas.1821686116
- Van Der Roest E. Bol R. Fens T. van Wijk A. Utilisation of waste heat from PEM electrolysers—Unlocking local optimisation Int. J. Hydrogen Energy 2023 48 27872 27891 10.1016/j.ijhydene.2023.03.374
- Dincer I. Acar C. Review and evaluation of hydrogen production methods for better sustainability Int. J. Hydrogen Energy 2015 40 11094 11111 10.1016/j.ijhydene.2014.12.035
- Nnabuife S.G. Hamzat A.K. Whidborne J. Kuang B. Jenkins K.W. Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production Int. J. Hydrogen Energy 2025 107 218 240 10.1016/j.ijhydene.2024.06.342
- Panigrahy B. Narayan K. Rao B.R. Green hydrogen production by water electrolysis: A renewable energy perspective Mater. Today Proc. 2022 67 1310 1314 10.1016/j.matpr.2022.09.254
- Hassan Q. Tabar V.S. Sameen A.Z. Salman H.M. Jaszczur M. A review of green hydrogen production based on solar energy; techniques and methods Energy Harvest. Syst. 2024 11 20220134
- Zhao H. Yuan Z.Y. Progress and perspectives for solar-driven water electrolysis to produce green hydrogen Adv. Energy Mater. 2023 13 2300254
- Vidas L. Castro R. Recent developments on hydrogen production technologies: State-of-the-art review with a focus on green-electrolysis Appl. Sci. 2021 11 11363
- Kojima H. Nagasawa K. Todoroki N. Ito Y. Matsui T. Nakajima R. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production Int. J. Hydrogen Energy 2023 48 4572 4593 10.1016/j.ijhydene.2022.11.018
- Sharifzadeh M. Cooper N. van’t Noordende H. Shah N. Operational strategies and integrated design for producing green hydrogen from wind electricity Int. J. Hydrogen Energy 2024 64 650 675 10.1016/j.ijhydene.2024.03.237
- Bonanno M. Müller K. Bensmann B. Hanke-Rauschenbach R. Aili D. Franken T. Chromik A. Peach R. Freiberg A.T. Thiele S. Review and prospects of PEM water electrolysis at elevated temperature operation Adv. Mater. Technol. 2024 9 2300281 10.1002/admt.202300281
- Hauch A. Ebbesen S.D. Jensen S.H. Mogensen M. Highly efficient high temperature electrolysis J. Mater. Chem. 2008 18 2331 2340 10.1039/b718822f
- Wang Y. Du Y. Ni M. Zhan R. Du Q. Jiao K. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell Appl. Therm. Eng. 2020 172 114959 10.1016/j.applthermaleng.2020.114959
- Moser M. Gils H.C. Pivaro G. A sensitivity analysis on large-scale electrical energy storage requirements in Europe under consideration of innovative storage technologies J. Clean. Prod. 2020 269 122261 10.1016/j.jclepro.2020.122261
- Gómez S.Y. Hotza D. Current developments in reversible solid oxide fuel cells Renew. Sustain. Energy Rev. 2016 61 155 174 10.1016/j.rser.2016.03.005
- Shen M. Ai F. Ma H. Xu H. Zhang Y. Progress and prospects of reversible solid oxide fuel cell materials iScience 2021 24 103464 10.1016/j.isci.2021.103464 34934912
- Gong C. Xu Y. Cai S. Chi B. Tu Z. Thermal dynamic analysis and multi-objective optimization of a 10 kW dual preheating solid oxide fuel cell system Int. J. Hydrogen Energy 2024 137 799 805
- Xiao G. Sun A. Liu H. Ni M. Xu H. Thermal management of reversible solid oxide cells in the dynamic mode switching Appl. Energy 2023 331 120383
- Mottaghizadeh P. Fardadi M. Jabbari F. Brouwer J. Thermal management of a reversible solid oxide system for long-term renewable energy storage Proceedings of the ASME International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers New York, NY, USA 2020 Volume 84560 V008T08A046
- Kim J.Y. Mastropasqua L. Saeedmanesh A. Brouwer J. Development of thermal control strategies for solid oxide electrolysis cell systems under dynamic operating conditions-Hot-standby and cold-start scenarios Energy 2025 317 134679
- Petipas F. Brisse A. Bouallou C. Thermal management of solid oxide electrolysis cell systems through air flow regulation Chem. Eng. Trans. 2017 61 1069 1074
- Angelico R. Giametta F. Bianchi B. Catalano P. Green hydrogen for energy transition: A critical perspective Energies 2025 18 404 10.3390/en18020404
- Shash A.Y. Abdeltawab N.M. Hassan D.M. Darweesh M. Hegazy Y. Computational methods, artificial intelligence, modeling, and simulation applications in green hydrogen production through water electrolysis: A review Hydrogen 2025 6 21 10.3390/hydrogen6020021
- Niknam P.H. Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies Energies 2025 18 4313 10.3390/en18164313
- Lange H. Klose A. Beisswenger L. Erdmann D. Urbas L. Modularization approach for large-scale electrolysis systems: A review Sustain. Energy Fuels 2024 8 1208 1224 10.1039/D3SE01588B
- Maddaloni M. Marchionni M. Abbá A. Mascia M. Tola V. Carpanese M.P. Bertanza G. Artioli N. Exploring the Via-bility of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs) Water 2023 15 2569 10.3390/w15142569
- Wu C. Zhu Q. Dou B. Fu Z. Wang J. Mao S. Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production Energy 2024 301 131678 10.1016/j.energy.2024.131678
- Choi S. Hong J. Thermal Integration of Solid Oxide Electrolysis Cell Systems with External Heat Sources to Maximize Heat Recuperation and Exergetic Efficiency ECS Trans. 2023 111 1203 10.1149/11106.1203ecst
- Kim Y. Lim K. Salihi H. Heo S. Ju H. The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells Energies 2024 17 125 10.3390/en17010125
- Chen K. Peng H. Zhang J. Xu X. Zhou S. Ruan J. Li B. Wang Y. Analysis of performance optimization of high-temperature solid oxide electrolytic cell based on the coupling of flow, heat, and mass transfer and electrochemistry Energy Sci. Eng. 2022 10 3918 3927
- Wang H. Xiao L. Liu Y. Zhang X. Zhou R. Liu F. Yuan J. Performance and Thermal Stress Evaluation of Full-Scale SOEC Stack Using Multi-Physics Modeling Method Energies 2023 16 7720 10.3390/en16237720
- Hasbi S. Amber I. Hossain M. Saharudin M.S. Performance optimisation of solid oxide electrolyser cell (SOEC) using response surface method (RSM) for thermal gradient reduction Int. J. Sustain. Energy 2025 44 2482837 10.1080/14786451.2025.2482837
- Rosati G. Baiguini M. Di Marcoberardino G. Invernizzi C.M. Iora P.G. Integrated ORC-SOEC system for green hy-drogen production from incineration of solid fuels J. Phy. Conf. Ser. 2022 2385 012108 10.1088/1742-6596/2385/1/012108
- Bhalani D.V. Lim B. Hydrogen separation membranes: A material perspective Molecules 2024 29 4676 10.3390/molecules29194676 39407605
- Pal N. Agarwal M. Advances in materials process and separation mechanism of the membrane towards hydrogen separation Int. J. Hydrogen Energy 2021 46 27062 27087 10.1016/j.ijhydene.2021.05.175
- Luo K. Dong R. Li X. Peng Z. Lu L. Xu J. Jin H. Guo L. Thermodynamic and safety analysis for hydrogen production in a supercritical water gasification system of coal by multi-oxidizers distribution Energy 2025 331 137105 10.1016/j.energy.2025.137105
- Tallgren J. Himanen O. Noponen M. Experimental characterization of low temperature solid oxide cell stack ECS Trans. 2017 78 3103 10.1149/07801.3103ecst
- Kyle B.G. Chemical and Process Thermodynamics Chemical Engineering Thermodynamics Prentice-Hall Wilmington, DE, USA 1984
- Keating E.L. Applied Combustion CRC Press Boca Raton, FL, USA 2007
- Kreith F. Black W.Z. Basic Heat Transfer Harper & Row New York, NY, USA 1980
- Oh D.-K. Lee K.-Y. Park J.-S. Hydrogen Purification from Compact Palladium Membrane Module Using a Low Temperature Diffusion Bonding Technology Membranes 2020 10 338 10.3390/membranes10110338
- Marino F. Ferrario A.M. Santoni F. Alfano A. Noponen M. Neubauer R. Cigolotti V. Jannelli E. Performance Evaluation of an Anode-Supported SOFC Short-Stack Operating with Different Fuel Blends as Stationary-CHP System J. Electrochem. Soc. 2024 171 054511 10.1149/1945-7111/ad4783
- Li Z. Huang Q. Yang L. Huang H. Wei K. Li D. Zhao C. Liu J. Li Z. Energy analysis of hydrogen production via fuel-assisted high-temperature solid oxide electrolysis cell via system modelling Sustain. Energy Res. 2025 12 31 10.1186/s40807-025-00158-y
- Ferrete F. Molina A. Cabello González G.M. Moreno-Racero Á. Olmedo H. Iranzo A. Solid Oxide Electrolyzers Process Integration: A Comprehensive Review Processes 2025 13 2656 10.3390/pr13082656
Issue
| Hydrogen (Switzerland), vol. 6, 2025, Albania, https://doi.org/10.3390/hydrogen6040082 |
|