Autors: Hinov, N. L.
Title: From Energy Efficiency to Energy Intelligence: Power Electronics as the Cognitive Layer of the Energy Transition
Keywords: artificial intelligence, digital twin, energy intelligence, GaN, power electronics, SiC, smart grid, sustainability, wide-bandgap semiconductors

Abstract: The exponential growth of artificial intelligence (AI), electrified transport, and renewable generation is accelerating a structural shift in how societies produce, deliver, and consume electricity. We argue that the next frontier is not incremental efficiency but Energy Intelligence (EI): the embedding of predictive analytics, adaptive control, and material-aware design directly into power-conversion hardware. In this view, power electronics functions as the cognitive layer that links digital intelligence to the physical flow of energy. Wide-bandgap (WBG) semiconductors—gallium nitride (GaN) and silicon carbide (SiC)—provide the material foundation for higher switching frequencies, superior power density, and real-time controllability, enabling compact and efficient converters for data-centers, EV charging, and grid-interactive resources. We formalize an EI reference architecture (predictive, adaptive, material-efficient, data-driven), review the convergence of AI methods with converter design and operation, and outline a GaN/SiC-enabled data-center power path as an illustrative case. Finally, we examine sustainability and sovereignty, highlighting exposure to critical materials (Ga, Si, In, rare earths) and proposing a roadmap that integrates technology, policy, and education. By reframing power electronics as an intelligent, learning infrastructure, this work sets an agenda for systems that are not only efficient but also self-optimizing, explainable, and resilient.

References

  1. Chauhan P. Pant S. Bharti B.K. Kuntal R.S. Tiwari V.K. Dhami J. Application of Wide Bandgap in Power Electronics: Next-gen Smart Grids Proceedings of the 2025 First International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies (CE2CT) Nainital, India 21–22 February 2025 1157 1161 10.1109/CE2CT64011.2025.10939487
  2. Das M. Keynote Address: WBG-Devices on Modern Power Electronics and Electric Drives Proceedings of the 2022 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives (IWED) Moscow, Russia 26–29 January 2022 1 10.1109/IWED54598.2022.9722587
  3. Kaźmierkowski M.P. Krishnan R. Blaabjerg F. Control in Power Electronics: Selected Problems Academic Press Oxford, UK 2002
  4. Erickson R.W. Maksimovic D. Fundamentals of Power Electronics Springer Science & Business Media Berlin/Heidelberg, Germany 2007
  5. Tang Z. Yang Y. Blaabjerg F. Power electronics: The enabling technology for renewable energy integration CSEE J. Power Energy Syst. 2022 8 39 52 10.17775/CSEEJPES.2021.02850
  6. Gao Y. Wang S. Dragicevic T. Wheeler P. Zanchetta P. Artificial Intelligence Techniques for Enhancing the Performance of Controllers in Power Converter-Based Systems—An Overview IEEE Open J. Ind. Appl. 2023 4 366 375 10.1109/OJIA.2023.3338534
  7. Subedi S. Gui Y. Xue Y. Applications of Data-Driven Dynamic Modeling of Power Converters in Power Systems: An Overview IEEE Trans. Ind. Appl. 2025 61 2434 2456 10.1109/TIA.2025.3529797
  8. International Energy Agency Electricity 2024 IEA Paris, France 2024 Available online: https://www.iea.org/reports/electricity-2024 (accessed on 10 October 2025)
  9. Offutt M.C. Zhu L. Data Centers and Their Energy Consumption: Frequently Asked Questions. CRS Report R48646, 26 August 2025. Congressional Research Service Available online: https://www.congress.gov/crs_external_products/R/PDF/R48646/R48646.1.pdf (accessed on 10 October 2025)
  10. Google LLC 2024 Environmental Report July 2024 Available online: https://sustainability.google/reports/google-2024-environmental-report/ (accessed on 10 October 2025)
  11. Chou S.-K. Hribar J. Mohorčič M. Fortuna C. The energy cost of artificial intelligence of things lifecycle arXiv 2024 10.48550/arXiv.2408.00540 2408.00540v1
  12. Andrae A.S.G. Edler T. On Global Electricity Usage of Communication Technology: Trends to 2030 Challenges 2015 6 117 157 10.3390/challe6010117
  13. International Energy Agency Global EV Outlook 2025. Paris May 2025 Available online: https://www.iea.org/reports/global-ev-outlook-2025 (accessed on 10 October 2025)
  14. Directorate-General for Energy Digitalisation of the Energy System. European Commission Available online: https://energy.ec.europa.eu/topics/eus-energy-system/digitalisation-energy-system_en (accessed on 10 October 2025)
  15. Gholami-Khesht H. Davari P. Blaabjerg F. Adaptive control in power electronic systems Control of Power Electronic Converters and Systems Academic Press Oxford, UK 2021 125 147
  16. Kolar J.W. Vision–Power Electronics 2.0: ECPE Roadmap 2025 Workshop Power Electronic Systems Laboratory, ETH Zurich Zurich, Switzerland 2014 Available online: https://www.ams-publications.ee.ethz.ch/uploads/tx_ethpublications/workshop_publications/___VISION_Power_Electronics_2025_finalfinalfinalfinal_270114.pdf (accessed on 23 October 2025)
  17. Chraye H. Power electronics, a key technology for the renewable energy system integration Proceedings of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe) Ghent, Belgium 6–10 September 2021 1 2 10.23919/EPE21ECCEEurope50061.2021.9570548
  18. Ponzina F. Machetti S. Rios M. Denkinger B.W. Levisse A. Ansaloni G. Peon-Quiros M. Atienza D. A Hardware/Software Co-Design Vision for Deep Learning at the Edge IEEE Micro 2022 42 48 54 10.1109/MM.2022.3195617
  19. Coelho S. Monteiro V. Afonso J.L. Topological Advances in Isolated DC–DC Converters: High-Efficiency Design for Renewable Energy Integration Sustainability 2025 17 2336 10.3390/su17062336
  20. Nielsen M.R. Deng S. Mirza A.B. Kjærsgaard B.F. Jørgensen A.B. Zhao H. Li Y. Munk-Nielsen S. Luo F. High-Power Electronic Applications Enabled by Medium Voltage Silicon-Carbide Technology: An Overview IEEE Trans. Power Electron. 2025 40 987 1011 10.1109/TPEL.2024.3442483
  21. Bhattacharjee S. Halder S. Kundu A. Iyer L.V. Kar N.C. Artificial Neural Network Based Improved Modulation Strategy for GaN–based Inverter in EV Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) London, ON, Canada 30 August–2 September 2020 1 4 10.1109/CCECE47787.2020.9255829
  22. Shao S. Cui W. Jiang Y. Pei X. Zhang J. Adaptive Balancing of Series-Connected SiC MOSFETs Based on Active Clamping and Comparison Circuitry IEEE Access 2025 13 3154 3164 10.1109/ACCESS.2024.3523357
  23. European Commission Critical Raw Materials Act Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials/critical-raw-materials-act_en (accessed on 10 October 2025)
  24. Bertrand A. How Long Can China Play the Rare Earth Card? Substack 2024 Available online: https://arnaudbertrand.substack.com/p/how-long-can-china-play-the-rare (accessed on 10 October 2025)
  25. Hurst C. China’s Rare Earth Elements: What Can the West Learn? Institute for the Analysis of Global Security (IAGS) Gaithersburg, MD, USA 2010 Available online: http://www.iags.org/rareearth0310hurst.pdf (accessed on 10 October 2025)
  26. International Energy Agency Global Critical Minerals Outlook 2025. Paris 21 May 2025 Available online: https://www.iea.org/reports/global-critical-minerals-outlook-2025 (accessed on 10 October 2025)
  27. U.S. Department of Energy Critical Minerals and Materials: U.S. Department of Energy’s Strategy to Support Domestic Critical Mineral and Material Supply Chains (FY 2021–FY 2031) U.S. Department of Energy Washington, DC, USA 2021 Available online: https://www.energy.gov/sites/prod/files/2021/01/f82/DOE%20Critical%20Minerals%20and%20Materials%20Strategy_0.pdf (accessed on 10 October 2025)
  28. Arevalo J. Latorre-Biel J.-I. Flor-Montalvo F.-J. Perez-Parte M. Blanco J. Cognitive Systems for the Energy Efficiency Industry Energies 2024 17 1860 10.3390/en17081860
  29. Patil V.J. Khadake S.B. Tamboli D.A. Mallad H.M. Takpere S.M. Sawant V.A. A Comprehensive Analysis of Artificial Intelligence Integration in Electrical Engineering Proceedings of the 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI) Lalitpur, Nepal 18–19 January 2024 484 491 10.1109/ICMCSI61536.2024.00076
  30. Directorate-General for Energy Strategic Roadmap for Digitalisation and AI in the Energy Sector–Consultations Opened European Commission Brussels, Belgium 6 August 2025 Available online: https://energy.ec.europa.eu/news/strategic-roadmap-digitalisation-and-ai-energy-sector-consultations-opened-2025-08-06_en (accessed on 15 October 2025)
  31. Zhang S. Wallscheid O. Porrmann M. Machine Learning for the Control and Monitoring of Electric Machine Drives: Advances and Trends IEEE Open J. Ind. Appl. 2023 4 188 214 10.1109/ojia.2023.3284717
  32. Sado K. Hannum J. Booth K. Digital Twin Modeling of Power Electronic Converters Proceedings of the 2023 IEEE Electric Ship Technologies Symposium (ESTS) Alexandria, VA, USA 1–4 August 2023 86 90 10.1109/ESTS56571.2023.10220465
  33. Gülgün K. Mercier-Laurent E. Intelligence in Energy Elsevier Amsterdam, The Netherlands 2017
  34. Chakraborty S. Hasan M.M. Paul M. Tran D.-D. Geury T. Davari P. Blaabjerg F. El Baghdadi M. Hegazy O. Real-Life Mission Profile-Oriented Lifetime Estimation of a SiC Interleaved Bidirectional HV DC/DC Converter for Electric Vehicle Drivetrains IEEE J. Emerg. Sel. Top. Power Electron. 2022 10 5142 5167 10.1109/JESTPE.2021.3083198
  35. Sadat A.R. Krishnamoorthy H.S. Measure Theory-based Approach for Remaining Useful Lifetime Prediction in Power Converters Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE) Detroit, MI, USA 11–15 October 2020 2541 2547 10.1109/ECCE44975.2020.9235635
  36. Yan L. Deng X. Li J. Integrated energy hub optimization in microgrids: Uncertainty-aware modeling and efficient operation Energy 2024 291 130391 10.1016/j.energy.2024.130391
  37. Remus T. Liserre M. Rodriguez P. Grid Converters for Photovoltaic and Wind Power Systems John Wiley & Sons Hoboken, NJ, USA 2011
  38. Dragičević T. Model predictive control of power converters for robust and fast operation of AC microgrids IEEE Trans. Power Electron. 2017 33 6304 6317 10.1109/TPEL.2017.2744986
  39. International Energy Agency (IEA) Energy Demand from Artificial Intelligence IEA Paris, France 2024 Available online: https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai, (accessed on 14 November 2025)
  40. Isazadeh A. Ziviani D. Claridge D.E. Global trends, performance metrics, and energy reduction measures in datacom facilities Renew. Sustain. Energy Rev. 2023 174 113149 10.1016/j.rser.2023.113149
  41. Kim J.H. Shin D.U. Kim H. Data Center Energy Evaluation Tool Development and Analysis of Power Usage Effectiveness with Different Economizer Types in Various Climate Zones Buildings 2024 14 299 10.3390/buildings14010299
  42. CISPR 11 Industrial, Scientific and Medical Equipment—Radio-Frequency Disturbance Characteristics—Limits and Methods of Measurement International Electrotechnical Commission (IEC) Geneva, Switzerland 2015
  43. CISPR 32 Electromagnetic Compatibility of Multimedia Equipment—Emission Requirements International Electrotechnical Commission (IEC) Geneva, Switzerland 2015
  44. IEC 61850-9-3 Communication Networks and Systems for Power Utility Automation—Part 9-3: Precision Time Protocol Profile for Power Utility Automation International Electrotechnical Commission Geneva, Switzerland 2016
  45. IEC 62541 OPC Unified Architecture International Electrotechnical Commission Geneva, Switzerland 2016
  46. IEC 62430 Environmentally Conscious Design (ECD)—Principles, Requirements and Guidance International Electrotechnical Commission Geneva, Switzerland 2019
  47. IEC 62402 Obsolescence Management, 2nd ed IEC Geneva, Switzerland 2019
  48. ISO 9001 Quality Management Systems—Requirements ISO Geneva, Switzerland 2015
  49. IEC 60300 Dependability Management IEC Geneva, Switzerland 2003
  50. Google DeepMind DeepMind AI Reduces Google Data Centre Cooling Bill by 40% Google Mountain View, CA, USA 2018
  51. Microsoft RECOM: Resource-Efficient Cloud Management Microsoft Redmond, WA, USA 2023
  52. Navitas GaN Fast Power Bench Navitas Semiconductor El Segundo, CA, USA 2022
  53. Texas Instruments (TI) GaN Evaluation Modules Texas Instruments Dallas, TX, USA 2021
  54. Statista Energy Use of Facebook (Meta) Data Centers Statista Hamburg, Germany 2023 Available online: https://www.statista.com/statistics/580087/energy-use-of-facebook-meta/ (accessed on 5 November 2025)
  55. Google Data-Center Freecooling Study Google Mountain View, CA, USA 2020 Available online: https://www.google.com/about/datacenters/efficiency/ (accessed on 5 November 2025)
  56. ANSI/ASHRAE Standard 90.4 Energy Standard for Data Centers ASHRAE Atlanta, GA, USA 2022
  57. NXP Semiconductors GaN Reliability Paper NXP Semiconductors Eindhoven, The Netherlands 2022
  58. Fraunhofer ISE GaN Power Device Reliability Study Fraunhofer Institute for Solar Energy Systems (ISE) Freiburg, Germany 2020
  59. Navitas GaN Whitepapers Navitas Semiconductor El Segundo, CA, USA 2021–2023
  60. Infineon Technologies GaN Whitepapers Infineon Technologies Neubiberg, Germany 2021–2023
  61. EPC GaN Whitepapers Efficient Power Conversion (EPC) El Segundo, CA, USA 2021–2023
  62. Rajendran G. Raute R. Caruana C. A Comprehensive Review of Solar PV Integration with Smart-Grids: Challenges, Standards, and Grid Codes Energies 2025 18 2221 10.3390/en18092221
  63. Zavodovski A. Gebremehdin A. Matta A. Kung A. Krukowski A. Hovsto A. Mukherjee A. Zachäus C. Filipovic D. Pongracz E. et al. AI in Energy AIOTI Brussels, Belgium 2024
  64. Nafeez A. “Planetary phase shift” as a new systems framework to navigate the evolutionary transformation of human civilization Foresight 2024 27 240 266
  65. International Energy Agency AI Is Set to Drive Surging Electricity Demand from Data Centers While Offering the Potential to Transform How the Energy Sector Works IEA News 10 April 2025 Available online: https://www.iea.org/news/ai-is-set-to-drive-surging-electricity-demand-from-data-centres-while-offering-the-potential-to-transform-how-the-energy-sector-works (accessed on 10 October 2025)
  66. IEC 62740 Application of Reliability, Availability, Maintainability and Safety (RAMS) for Railway Systems IEC Geneva, Switzerland 2021
  67. IEC 62402 Application of Reliability, Availability, Maintainability and Safety (RAMS)—Guidance on Achieving RAMS IEC Geneva, Switzerland 2019

Issue

Electronics (Switzerland), vol. 14, 2025, Switzerland, https://doi.org/10.3390/electronics14234673

Copyright MDPI

Цитирания (Citation/s):
1. Nica I., Georgescu I., Kinnunen J., A Fuzzy-Machine Learning Framework for Energy Efficiency Optimization and Smart Transition Analysis in European Economies, 2026, Electronics Switzerland, issue 2, vol. 15, DOI 10.3390/electronics15020276, eissn 20799292 - 2026 - в издания, индексирани в Scopus

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science