Autors: Aleksandrova, M. P.
Title: 3D structured backside electrode intended for perovskite photoelectric converters: a novel approach
Keywords: 3D patterns, Grayscale photolithography, Perovskite solar cells, Rear electrodes

Abstract: This work explores the integration of three-dimensionally (3D) structured rear electrode intended for perovskite solar cells to enhance light management and mechanical stability, addressing limitations as inner light distribution and durability that hinder the performance of these thin-film devices. The motivation for this research arises from the need for improved light trapping and robust electrode structures in flexible and wearable solar cell applications. 3D electrodes were fabricated using grayscale lithography, enabling precise control over surface topography and subsequent aluminum metallization to create a strongly reflective layer. The resulting electrodes were characterized for sheet resistance, reflectance of light with a peak emission wavelength of 700 nm and irradiance of up to 4 mW/cm2, and mechanical stability at 10 000 bending cycles. Results demonstrate that the 3D structured electrodes exhibit enhanced reflectance compared to flat electrodes, which is a precondition for improved light trapping. Furthermore, they show improved electrical performance, as well as mechanical stability under bending, maintaining higher reflectance and lower sheet resistance increase compared to flat electrodes. These findings suggest that 3D structured rear electrodes fabricated by grayscale lithography offer a promising approach for improving the efficiency and durability of perovskite solar cells, particularly for flexible and wearable applications. The power conversion efficiency (PCE) increased from 17.7% for a flat electrode to 21.4% for a 3D patterned. Moreover, 3D patterned layers exhibited only 12.5% drop in their reflectance after multiple bending, while the flat electrodes exhibited a 19%.

References

  1. P. Amalathas M.M. Alkaisi Nanostructures for light trapping in thin film solar cells Micromachines 10 10.3390/mi10090619 619
  2. H. Baishya M.J. Patel R.D. Adhikari D. Yadav P.K. Iye Minimizing defect states through multidentate coordination and morphology regulation for enhancing the performance of inverted perovskite solar cells Nanoscale 16 21804 21816 1:CAS:528:DC%2BB2cXisVehsr3F 10.1039/D4NR03140G
  3. P. Barmavatu B. Gaddala D. Doddamani et al. Innovations in advanced material design for enhancing stability in perovskite solar cells SILICON 17 1841 1858 1:CAS:528:DC%2BB2MXhtlaktb%2FO 10.1007/s12633-025-03314-7
  4. C. Bi Y. Shao Y. Yuan Z. Xiao C. Wang Y. Gao J. Huang Understanding the formation and evolution of interdiffusion grown organo lead halide perovskite thin films by thermal annealing J Mater Chem A 2 18508 18514 1:CAS:528:DC%2BC2cXhsFGlsL7P 10.1039/C4TA04007D
  5. W. Chen Y. Yu W. Wang et al. Influence of rear surface pyramid base microstructure on industrial n-TOPCon solar cell performances Solar Energy 247 24 31 1:CAS:528:DC%2BB38Xislaks73J 10.1016/j.solener.2022.10.017
  6. F. Cao L. Bian L. Li Perovskite solar cells with high-efficiency exceeding 25%: a review Energy Materials and Devices 2 1 10.26599/EMD.2024.9370018 9370018
  7. F. Di Giacomo L.A. Castriotta F. Matteocci A. Di Carlo Beyond 99.5% geometrical fill factor in perovskite solar minimodules with advanced laser structuring Adv Energy Mater 14 1:CAS:528:DC%2BB2cXhtVCgt7vO 10.1002/aenm.202400115 2400115
  8. Fluxim AG, Highest Efficiency Solar Cells: Perovskite Solar Cells. Accessed May 2025. https://www.fluxim.com/research-blogs/perovskite-silicon-tandem-pv-record-updates
  9. P. Cheng Y. An A.K. Jen D. Lei New nanophotonics approaches for enhancing the efficiency and stability of perovskite solar cells Adv Mater 36 1:CAS:528:DC%2BB2cXptFKmtQ%3D%3D 10.1002/adma.202309459 2309459
  10. G. Giuliano A. Bonasera G. Arrabito B. Pignataro Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges Solar RRL 5 1:CAS:528:DC%2BB3MXisVChurfK 10.1002/solr.202100702 2100702
  11. Y. Gou J. Zhang B. Jin et al. Work function tuning of carbon electrode to boost the charge extraction in hole transport layer-free perovskite solar cells Small 20 2403342 1:CAS:528:DC%2BB2cXhtFyntbrI 10.1002/smll.202403342
  12. M. Heller D. Kaiser M. Stegemann G. Holfeld N. Morgana J. Schneider D. Sarlette Grayscale lithography: 3D structuring and thickness control Proc SPIE 8683 868310 10.1117/12.2008847
  13. O. Höhn N. Tucher B. Bläsi Theoretical study of pyramid sizes and scattering effects in silicon photovoltaic module stacks Opt Express 26 A320 A330 10.1364/OE.26.00A320
  14. Y. Hu Y. Zhu Y.F. Fu et al. 3D-printed topological-structured electrodes with exceptional mechanical properties for high-performance flexible Li-ion batteries Energy Storage Mater 70 103560 10.1016/j.ensm.2024.103560
  15. C. Ji W. Liu Y. Bao X. Chen G. Yang B. Wei F. Yang X. Wang Recent applications of antireflection coatings in solar cells Photonics 9 1:CAS:528:DC%2BB3sXpsFyjtw%3D%3D 10.3390/photonics9120906 906
  16. X. Jiang S. Qin L. Meng et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells Nature 635 860 866 10.1038/s41586-024-08160-y
  17. Y. Jiang et al. Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells Mater Horiz 3 548 555 1:CAS:528:DC%2BC28Xht1yqtLjF 10.1039/C6MH00160B
  18. V. Joddumahanthi Ł. Knypiński Y. Gopal K. Kasprzak Review of power electronics technologies in the integration of renewable energy systems Appl Sci 15 1:CAS:528:DC%2BB2MXpvVWnsLg%3D 10.3390/app15084523 4523
  19. H. Jung C. Park S. Oh et al. Nanoscale 2.5-dimensional surface patterning with plasmonic lithography Sci Rep 7 10.1038/s41598-017-10047-0 9721
  20. S.N. Khonina N.L. Kazanskiy M.A. Butt Grayscale lithography and a brief introduction to other widely used lithographic methods: a state-of-the-art review Micromachines 15 10.3390/mi15111321 1321
  21. Z. Maghdouri M. Mehrpooya Optimization of nanostructured perovskite solar cells: enhancing light absorption and electrical efficiency with novel designs J Renewable Sustainable Energy 17 4 1:CAS:528:DC%2BB2MXhs1agtL7F 10.1063/5.0257566 043502
  22. G.M. Meheretu A.K. Worku M.T. Yihunie R.K. Koech G.A. Wubetu The recent advancement of outdoor performance of perovskite photovoltaic cells technology Heliyon 10 17 1:CAS:528:DC%2BB2cXhvV2mt7rM 10.1016/j.heliyon.2024.e36710 e36710
  23. Microresist Technology https://www.microresist.de/en/produkt/ma-p-1200g-series/ Accessed 18 July 2025
  24. K.D. Möller Optics: learning by computing with examples using MathCAD New York Springer 10.1007/b97508
  25. S.M. Park H. Jin J. Cha et al. Interface engineering for efficient and stable back-contact perovskite solar cells J Power Sources 654 1:CAS:528:DC%2BB2MXhsFWrsrzJ 10.1016/j.jpowsour.2025.237703 237703
  26. L. Pei X.K. Gong L. Li Z. Ma X. Chen X. Zhang 3D surface microstructure of silicon modified by QDs to improve solar cell performance through down-conversion and anti-reflection mechanism Colloids Surf A Physicochem Eng Asp 675 132015 1:CAS:528:DC%2BB3sXhsFGqtrrM 10.1016/j.colsurfa.2023.132015
  27. V.J. Reddy N.P. Hariram M.F. Ghazali S. Kumarasamy Pathway to sustainability: an overview of renewable energy integration in building systems Sustainability 16 2 1:CAS:528:DC%2BB2cXjtVKqs7s%3D 10.3390/su16020638 638
  28. S. Sun B. He Z. Wang W. Liu et al. Integration of SWCNT and WO3 for efficient charge extraction in all-inorganic perovskite solar cells Chem Eng J 483 1:CAS:528:DC%2BB2cXjsVCiu7c%3D 10.1016/j.cej.2024.149425 149425
  29. K. Ukoba K.O. Yoro O. Eterigho-Ikelegbe C. Ibegbulam T.-C. Jen Adaptation of solar energy in the Global South: prospects, challenges and opportunities Heliyon 10 7 10.1016/j.heliyon.2024.e28009 e28009
  30. M.-Q. Wei Y.-S. Lai P.-H. Tseng M.-Y. Li C.-M. Huang F.-H. Ko Concept for efficient light harvesting in perovskite materials via solar harvester with multi-functional folded electrode Nanomaterials 11 1:CAS:528:DC%2BB38Xpt1ajsA%3D%3D 10.3390/nano11123362 3362
  31. H. Yu Y. Peng Y. Yang et al. Plasmon-enhanced light–matter interactions and applications Npj Comput Mater 5 10.1038/s41524-019-0184-1 45
  32. W. Yu K.J. Lee Y. Li Z. Huang R. Zhou A. Chen C. Guo Advancements in halide perovskite photonics Adv Opt Photon 16 868 957 10.1364/AOP.531166
  33. S.Y. Zhang H. Gu S.C. Chen Q.D. Zheng KF-doped SnO2as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced opencircuit voltages J Mater Chem C 9 4240 4247 1:CAS:528:DC%2BB3MXmtVWisr4%3D 10.1039/D1TC00277E

Issue

Energy, Ecology and Environment, pp. 1-11, 2025, China, https://doi.org/10.1007/s40974-025-00396-2

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus