Autors: Tsanev, T. D., Aleksandrova, M. P.
Title: Investigation of Blade Printing Technique for Nano-Structuring Piezoelectric Polymer Ink in a Porous Anodic Aluminum Oxide
Keywords: anodic aluminum oxide, blade printing, energy harvesting, nanorods, nanostructuring, piezoelectric polymer

Abstract: In this work, we investigated the use of a piezoelectric flexible device for energy harvesting. The main goal of the study was to fill the nanostructured pores of anodic aluminum oxide (AAO) films with piezoelectric polymer (PVDF-TrFE) via a modified conventional screen printing technique using blade printing. In this way, it is possible to obtain a composite from nanostructured thin films of polymer nanorods that shows improved charge generation ability compared to other non-nanostructured composites or pure (non-composite) aluminum with similar dimensions. This behavior is due to the effect of the highly developed surface of the material used to fill in the AAO nanopore template and its ability to withstand the application of higher mechanical loads to the structured piezoelectric material during deformation. The contact blade print filling technique can produce nanostructured piezoelectric polymer films with precise geometric parameters in terms of thickness and nanorod diameters, at around 200 nm, and a length of 12 μm. At a low frequency of 17 Hz, the highest root-mean-square (RMS) voltage generated using the nanostructured AAO/PVDF-TrFE sample with aluminum electrodes was around 395 mV. At high frequencies above 1700 Hz, the highest RMS voltage generated using the nanostructured AAO/PVDF-TrFE sample with gold electrodes was around 680 mV. The RMS voltage generated using a uniform (non-nanostructured) layer of PVDF-TrFE was 15% lower across the whole frequency range.

References

  1. Kroener M. Energy harvesting technologies: Energy sources, generators and management for wireless autonomous applications Proceedings of the International Multi-Conference on Systems, Signals & Devices Chemnitz, Germany 20–23 March 2012 1 4 10.1109/SSD.2012.6198111
  2. Uchino K. Chapter 1—The Development of Piezoelectric Materials and the New Perspective Advanced Piezoelectric Materials 2nd ed. Uchino K. Woodhead Publishing Cambridge, UK 2017 1 92 9780081021354
  3. Li J. Kang L. Yu Y. Long Y. Jeffery J. Cai W. Wang X. Study of long-term biocompatibility and bio-safety of implantable nanogenerators Nano Energy 2018 51 728 735 10.1016/j.nanoen.2018.07.008
  4. Lee D.G. Kim S.B. Yan Y. Hur S. Hyun C.S. Brief Review of Lead-Free Piezoelectric Ceramics for High-Power Applications J. Sens. Sci. Technol. 2025 34 116 123 10.46670/JSST.2025.34.2.116
  5. Chauhan S.S. Bhatt U.M. Gautam P. Thote S. Joglekar M.M. Manhas S.K. Fabrication and modeling of β-phase PVDF-TrFE based flexible piezoelectric energy harvester Sens. Actuators A Phys. 2020 304 111879 10.1016/j.sna.2020.111879
  6. Montero K.L. Laurila M.-M. Mäntysalo M. Effect of Electrode Structure on the Performance of Fully Printed Piezoelectric Energy Harvesters IEEE J. Flex. Electron. 2022 1 24 31 10.1109/JFLEX.2022.3156050
  7. Aleksandrova M. Tsanev T. Gupta A. Singh A.K. Dobrikov G. Videkov V. Sensing Ability of Ferroelectric Oxide Nanowires Grown in Templates of Nanopores Materials 2020 13 1777 10.3390/ma13071777
  8. Fang H.J. Chen Y. Wong C.M. Qiu W.B. Chan H.L.W. Dai J.Y. Li Q. Yan Q.F. Anodic aluminum oxide–epoxy composite acoustic matching layers for ultrasonic transducer application Ultrasonics 2016 70 29 33 10.1016/j.ultras.2016.04.003 27125558
  9. Briscoe J. Dunn S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters Nano Energy 2015 14 15 29 10.1016/j.nanoen.2014.11.059
  10. Lee G.J. Lee M.K. Park J.J. Hyeon D.Y. Jeong C.K. Park K.I. Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes ACS Appl. Mater. Interfaces 2019 11 37920 37926 10.1021/acsami.9b12187
  11. Roscow J.I. Zhang Y. Kraśny M.J. Lewis R.W.C. Taylor J. Bowen C.R. Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting J. Phys. D Appl. Phys. 2018 51 225301 10.1088/1361-6463/aabc81
  12. Iwuozor K.O. Jimoh T.A. Ojo H.T. Emenike E.C. Emeghai J. Adeniyi A.G. Polymer-based piezoelectric materials: Structure, mechanism, applications, and future trends Surf. Interfaces 2025 70 106855 10.1016/j.surfin.2025.106855
  13. Aleksandrova M. Tsanev T. Kadikoff B. Alexandrov D. Nedelchev K. Kralov I. Piezoelectric Elements with PVDF–TrFE/MWCNT-Aligned Composite Nanowires for Energy Harvesting Applications Crystals 2023 13 1626 10.3390/cryst13121626
  14. Sim G. Seo H. Hwangbo J. Kim T. Choi Y. Nano-structured piezoelectric polymers for biomedical application APL Electron. Devices 2025 1 021504 10.1063/5.0262420
  15. Xiong J. Wang L. Liang F. Li M. Yabuta Y. Iqbal M.A. Mayakrishnan G. Shi J. Kim I.S. Flexible Piezoelectric Sensor Based on Two-Dimensional Topological Network of PVDF/DA Composite Nanofiber Membrane Adv. Fiber Mater. 2024 6 1212 1228 10.1007/s42765-024-00415-7
  16. Ma W. Hesse D. Gösele U. Nanostructure Patterns of Piezoelectric and Ferroelectric Complex Oxides with Various Shapes, Obtained by Natural Lithography and Pulsed Laser Deposition Nanotechnology 2006 17 2536 10.1088/0957-4484/17/10/016
  17. Molarius J. Kaitila J. Pensala T. Ylilammi M. Piezoelectric ZnO Films by R.F. Sputtering J. Mater. Sci. Mater. Electron. 2003 14 431 435 10.1023/A:1023929524641
  18. Fortunato M. Chandraiahgari C.R. De Bellis G. Ballirano P. Soltani P. Kaciulis S. Caneve L. Sarto F. Sarto M.S. Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition IEEE Trans. Nanotechnol. 2018 17 311 319 10.1109/TNANO.2018.2800406
  19. Kammel R.S. Sabry R.S. Effects of the Aspect Ratio of ZnO Nanorods on the Performance of Piezoelectric Nanogenerators J. Sci. Adv. Mater. Devices 2019 4 420 424 10.1016/j.jsamd.2019.08.002
  20. Tadigadapa S. Piezoelectric Microelectromechanical Systems—Challenges and Opportunities Procedia Eng. 2010 5 468 471 10.1016/j.proeng.2010.09.148
  21. Whiter R.A. Narayan V. Narayan S.K. A Scalable Nanogenerator Based on Self-Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency Adv. Energy Mater. 2014 4 1400519 10.1002/aenm.201400519
  22. Nanopaint-tech.com Available online: https://nanopaint-tech.com/piezoelectric-inks (accessed on 28 September 2025)
  23. Nanopaint-tech.com Available online: https://nanopaint-tech.com/wp-content/uploads/PEInk01NP.pdf (accessed on 28 September 2025)
  24. Aleksandrova M. Mateev V. Iliev I. Behavior of Polymer Electrode PEDOT:PSS/Graphene on Flexible Substrate for Wearable Biosensor at Different Loading Modes Nanomaterials 2024 14 1357 10.3390/nano14161357 39195395
  25. Fan Z. Lu J. Zinc Oxide Nanostructures: Synthesis and Properties J. Nanosci. Nanotechnol. 2005 5 1561 1573 10.1166/jnn.2005.182
  26. Zhang C. Ren W. Liao X. On the Relationship between Contact Resistance and Load Force for Electrode Materials with Rough Surfaces Materials 2022 15 5667 10.3390/ma15165667 36013805
  27. Wang L. Liang C. Prorok B.C. A Comparison of Testing Methods in Assessing the Elastic Properties of Sputter Deposited Gold Films Thin Solid Film. 2007 515 7911 7918 10.1016/j.tsf.2007.04.022
  28. Read D.T. Cheng Y.-W. Keller R.R. McColskey J.D. Tensile Properties of Free-Standing Aluminum Thin Films Scr. Mater. 2001 45 583 589 10.1016/S1359-6462(01)01067-3
  29. Liu C. Wang J. Zhang W. Yang X.-D. Guo X. Liu T. Su X. Synchronization of Broadband Energy Harvesting and Vibration Mitigation via 1:2 Internal Resonance Int. J. Mech. Sci. 2025 301 110503 10.1016/j.ijmecsci.2025.110503
  30. Liu C. Zhao R. Yu K. Lee H.P. Liao B. A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams Energy 2021 233 121146 10.1016/j.energy.2021.121146

Issue

Polymers, vol. 17, pp. 2839, 2025, Albania, https://doi.org/10.3390/polym17212839

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science