Autors: Das D., Taralova I., Loiseau J.J., Filipova-Petrakieva, S. K. Title: Fractional Model Predictive Control of Fractional Chaotic Rössler Oscillator Keywords: Chaotic fractional-order Rössler Oscillator, Fractional Model Predictive Control (FMPC), Grünwald-Letnikov Characterization, Steady-state convergenceAbstract: Copyright In this research, we introduce a novel Fractional Model Predictive Control (FMPC) method for controlling the fractional-order Rössler system, addressing the limitations of conventional integer-order techniques. We adopt the Grünwald-Letnikov formulation for characterizing fractional dynamics due to its computational simplicity and ease of implementation, contrasting it with the Caputo and Riemann-Liouville characterizations. Our FMPC framework integrates fractional-order models directly into the predictive control structure, enhancing stability, suppressing chaos, and ensuring convergence to steady states, even under variable prediction and control horizons and noisy conditions. Results demonstrate significant improvements in control performance and robustness. References - Boudjehem, D. and Boudjehem, B. (2012). A fractional model predictive control for fractional order systems. Fractional dynamics and control, 59-71.
- J. Čermák, and L. Nechvátal Local bifurcations and chaos in the fractional rössler system International Journal of Bifurcation and Chaos 28 08 2018 1850098
- D. Das, I. Taralova, and J. Loiseau Time-delay feedback control of fractional chaotic rössler oscillator IFAC-PapersOnLine 58 5 2024 90 95
- Das, D., Taralova, I., Loiseau, J.J., Pandey, M., and Slavov, T. (2025). Reinforcement learning-based pid control of rössler oscillator. In Proceedings of the 5th International Conference on Electrical, Computer and Energy Technologies (ICECET)-IEEE Proceedings. Paris, France. Accepted.
- C. Li, and G. Chen Chaos and hyperchaos in the fractional-order rössler equations Physica A: Statistical Mechanics and its Applications 341 2004 55 61
- J. Lovoie, J. Osler, and R. Tremblay Fractional derivatives and special functions SIAM review 18 2 1976 240 268
- Maciejowski, J., Goulart, P., and Kerrigan, E. (2007). Constrained control using model predictive control. Advanced strategies in control systems with input and output constraints, 273-291.
- D. Matignon Stability results for fractional difer-ential equations with applications to control processing. In Computational engineering in systems applications, volume 2 1996 Citeseer 963 968
- Oliveira, E.D., Machado, J.T., et al. (2014). A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, 2014.
- M. Owolabi, and A. Atangana Numerical methods for fractional differentiation, volume 54 2019 Springer
- O.E. Rössler An equation for continuous chaos Physics Letters A 57 5 1976 397 398
- L. Santini Control of Chaotic Systems through Model Predictive Control: Case of Rössler Oscillator 2024 Master's thesis, École Centrale de Nantes, France
- R. Scherer, L. Kalla, Y. Tang, and J. Huang The grünwald-letnikov method for fractional differential equations Computers & Mathematics with Applications 62 3 2011 902 917
Issue
| IFAC-PapersOnLine, vol. 59, pp. 156-161, 2025, France, https://doi.org/10.1016/j.ifacol.2025.09.541 |
|