Autors: Maris T., Christodoulou C., Mladenov, V. M.
Title: Enhancing Distribution Network Resilience Using Genetic Algorithms
Keywords: distribution networks, genetic algorithms, resilience

Abstract: Ensuring the resilience and efficiency of modern distribution networks is increasingly critical in the presence of distributed energy resources (DERs). This study presents a multi-objective optimization framework based on a Genetic Algorithm (GA) to improve voltage profiles, minimize active power losses, and enhance resilience in a radial distribution network. A simplified 6-bus radial test system with DERs at buses 2, 3, and 4 is considered as a proof-of-concept case study. The GA optimizes control variables, including DER setpoints and network reconfiguration, under operational and thermal constraints. The optimization employs a weighted objective function combining voltage profile improvement, loss minimization, and a resilience penalty term that accounts for bus voltage collapse and branch overloads during DER contingencies. Simulation results demonstrate that the GA significantly improves network performance: the minimum bus voltage rises from 0.92 pu to 0.97 pu, while the total real power losses decrease by 46% (from 55.3 kW to 29.7 kW). Moreover, in the event of a DER outage, the optimized configuration preserves 100% load delivery, compared to 89% in the base case. These findings confirm that GA is an effective and practical tool for enhancing distribution network operation and resilience under high DER penetration. Future work will extend the approach to larger IEEE benchmark systems and time-series scenarios.

References

  1. Panteli M. Mancarella P. The Grid: Stronger, Bigger, Smarter? Presenting a Conceptual Framework of Power System Resilience IEEE Power Energy Mag. 2015 13 58 66 10.1109/MPE.2015.2397334
  2. Daeli A. Mohagheghi S. Power Grid Infrastructural Resilience against Extreme Events Energies 2022 16 64 10.3390/en16010064
  3. Stanković A.M. Tomsovic K.L. De Caro F. Braun M. Chow J.H. Čukalevski N. Dobson I. Eto J. Fink B. Hachmann C. et al. Methods for Analysis and Quantification of Power System Resilience IEEE Trans. Power Syst. 2023 38 4774 4787 10.1109/TPWRS.2022.3212688
  4. Krausmann E. Karagiannis G.M. Turksezer Z.I. Chondrogiannis S. Power Grid Recovery After Natural Hazard Impact Publications Office of the European Union Brussels, Belgium 2017 10.2760/87402
  5. Hosseini M.M. Parvania M. Artificial Intelligence for Resilience Enhancement of Power Distribution Systems Electr. J. 2021 34 106880 10.1016/j.tej.2020.106880
  6. Cordova J. Soto C. Gilanifar M. Zhou Y. Srivastava A. Arghandeh R. Shape Preserving Incremental Learning for Power Systems Fault Detection IEEE Control Syst. Lett. 2019 3 85 90 10.1109/LCSYS.2018.2852064
  7. Gomes D.P.S. Ozansoy C. Ulhaq A. High-Sensitivity Vegetation High-Impedance Fault Detection Based on Signal’s High-Frequency Contents IEEE Trans. Power Deliv. 2018 33 1398 1407 10.1109/TPWRD.2018.2791986
  8. Hamidieh M. Ghassemi M. Microgrids and Resilience: A Review IEEE Access 2022 10 106059 106080 10.1109/ACCESS.2022.3211511
  9. Bie Z. Lin Y. Li G. Li F. Battling the Extreme: A Study on the Power System Resilience Proc. IEEE 2017 105 1253 1266 10.1109/JPROC.2017.2679040
  10. Biringer B. Vugrin E. Warren D. Critical Infrastructure System Security and Resiliency CRC Press Boca Raton, FL, USA 2013
  11. Ouyang M. Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems Reliab. Eng. Syst. Saf. 2014 121 43 60 10.1016/j.ress.2013.06.040
  12. Nguyen H.T. Parvania M. Khargonekar P. Worst-Case Probabilistic Network Outage Identification under Physical Disturbances IEEE Control Syst. Lett. 2020 4 115 120 10.1109/LCSYS.2019.2922007
  13. Swarup K. Chandrasekharaiah H. Fault Detection and Diagnosis of Power Systems Using Artificial Neural Networks Proceedings of the First International Forum on Applications of Neural Networks to Power Systems Seattle, WA, USA 21–24 July 1991 243 247 10.1109/ANN.1991.213505
  14. Pilli-Sihvola K. Aatola P. Ollikainen M. Tuomenvirta H. Climate Change and Electricity Consumption—Witnessing Increasing or Decreasing Use and Costs? Energy Policy 2010 38 2409 2419 10.1016/j.enpol.2009.12.033
  15. Panteli M. Mancarella P. Influence of Extreme Weather and Climate Change on the Resilience of Power Systems: Impacts and Possible Mitigation Strategies Electr. Power Syst. Res. 2015 127 259 270 10.1016/j.epsr.2015.06.012
  16. Fant C. Boehlert B. Strzepek K. Larsen P. White A. Gulati S. Li Y. Martinich J. Climate Change Impacts and Costs to U.S. Electricity Transmission and Distribution Infrastructure Energy 2020 195 116899 10.1016/j.energy.2020.116899 32055100
  17. Chandramowli S.N. Felder F.A. Impact of Climate Change on Electricity Systems and Markets—A Review of Models and Forecasts Sustain. Energy Technol. Assess. 2014 5 62 74 10.1016/j.seta.2013.11.003
  18. National Academies of Sciences, Engineering, and Medicine Enhancing the Resilience of the Nation’s Electricity System National Academies Press Washington, DC, USA 2017 10.17226/24836
  19. Wenzel F. Andreini E. Baltasar B. Boston T. Botbaev K. Cohen J. Eismann C. García-Arístizábal A. Keršnik M. König M. et al. Protecting Electricity Networks from Natural Hazards Organization for Security and Co-operation in Europe Vienna, Austria 2016 Available online: https://www.osce.org/secretariat/242651 (accessed on 1 October 2025)
  20. Johnston P.C. Gomez J.F. Laplante B. Climate Risk and Adaptation in the Electric Power Sector Asian Development Bank Mandaluyong City, Philippines 2012
  21. International Energy Agency (IEA) Status of Power System Transformation 2019: Power System Flexibility OECD Publishing Paris, France 2019 Available online: https://www.iea.org/reports/status-of-power-system-transformation-2019 (accessed on 2 August 2025)
  22. Toft P. Duero A. Bieliauskas A. Terrorist Targeting and Energy Security Energy Policy 2010 38 4411 4421 10.1016/j.enpol.2010.03.070
  23. Jufri F.H. Widiputra V. Jung J. State-of-the-Art Review on Power Grid Resilience to Extreme Weather Events: Definitions, Frameworks, Quantitative Assessment Methodologies, and Enhancement Strategies Appl. Energy 2019 239 1049 1065 10.1016/j.apenergy.2019.02.017
  24. Gkika A. Gakis F. Zacharis E. Manolis I. Improving the Power Distribution Grid Resilience through the Integration of Distributed Energy Resources: Case Studies in Greece Proceedings of the 10th International Conference on Energy, Sustainability and Climate Crisis Heraklion, Greece 5–9 June 2023
  25. Denton F. Wilbanks T.J. Abeysinghe A.C. Burton I. Gao Q. Lemos M.C. Masui T. O’Brien K.L. Warner K. Climate-Resilient Pathways: Adaptation, Mitigation, and Sustainable Development Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects Cambridge University Press Cambridge, UK 2014 1101 1131 Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap20_FINAL.pdf (accessed on 2 August 2025)
  26. Litra G. FERC Ends Department of Energy’s Proposed Resilience Rule but Initiates a Resilience Proceeding of Its Own. ScottMadden 2024 Available online: https://www.scottmadden.com/insight/ferc-ends-department-energys-proposed-resilience-rule-initiates-resilience-proceeding/ (accessed on 2 August 2025)
  27. Vega Penagos C.A. Diaz J.L. Rodriguez-Martinez O.F. Andrade F. Luna A.C. Metrics and Strategies Used in Power Grid Resilience Energies 2024 17 168 10.3390/en17010168
  28. Willis H.H. Loa K. Measuring the Resilience of Energy Distribution Systems. RAND Corporation 2015 Available online: https://www.rand.org/pubs/research_reports/RR883.html (accessed on 2 August 2025)
  29. Goulioti E.G. Nikou T.M. Kontargyri V.T. Christodoulou C.A. Smart-Grid Technologies and Climate Change: How to Use Smart Sensors and Data Processing to Enhance Grid Resilience in High-Impact High-Frequency Events Energies 2025 18 2793 10.3390/en18112793
  30. Vugrin E.D. Castillo A. Silva-Monroy C.A. Resilience Metrics for the Electric Power System: A Performance-Based Approach Sandia National Laboratories Albuquerque, NM, USA 2017 10.2172/1367499
  31. Watson J.-P. Guttromson R. Silva-Monroy C. Jeffers R. Jones K. Ellison J. Rath C. Gearhart J. Jones D. Corbet T. et al. Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Sandia National Laboratories Albuquerque, NM, USA 2014 10.2172/1177743
  32. Ma X. Zhou H. Li Z. On the Resilience of Modern Power Systems: A Complex Network Perspective Renew. Sustain. Energy Rev. 2021 152 111646 10.1016/j.rser.2021.111646
  33. Kwasinski A. Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level Energies 2016 9 93 10.3390/en9020093
  34. Hosseini M.M. Parvania M. Quantifying Impacts of Automation on Resilience of Distribution Systems IET Smart Grid 2020 3 144 152 10.1049/iet-stg.2019.0175
  35. Hosseini M.M. Umunnakwe A. Parvania M. Automated Switching Operation for Resilience Enhancement of Distribution Systems Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM) Atlanta, GA, USA 4–8 August 2019 1 5 10.1109/PESGM40551.2019.8973752
  36. Khan M.M.S. Palomino A. Brugman J. Giraldo J. Kasera S.K. Parvania M. The Cyberphysical Power System Resilience Testbed: Architecture and Applications Computer 2020 53 44 54 10.1109/MC.2020.2973107
  37. Li F. Du Y. From AlphaGo to Power System AI: What Engineers Can Learn from Solving the Most Complex Board Game IEEE Power Energy Mag. 2018 16 76 84 10.1109/MPE.2017.2779554
  38. Christodoulou C.A. Gonos I.F. Stathopulos I.A. Estimation of the Parameters of Metal Oxide Gapless Surge Arrester Equivalent Circuit Models Using Genetic Algorithm Electr. Power Syst. Res. 2011 81 1881 1886 10.1016/j.epsr.2011.05.013
  39. Evangelides P.F. Christodoulou C.A. Gonos I.F. Stathopulos I.A. Parameters’ Selection for Metal Oxide Surge Arresters Models Using Genetic Algorithm Proceedings of the 30th International Conference on Lightning Protection (ICLP) Cagliari, Italy 13–17 September 2010 Paper 9C-1315
  40. Gonos I.F. Topalis F.V. Stathopulos I.A. A Genetic Algorithm Approach to the Modelling of Polluted Insulators IEE Proc. Gener. Transm. Distrib. 2002 149 373 376 10.1049/ip-gtd:20020343
  41. Gonos I.F. Stathopulos I.A. Estimation of Multi-Layer Soil Parameters Using Genetic Algorithms IEEE Trans. Power Deliv. 2005 20 100 106 10.1109/TPWRD.2004.836833
  42. Fotis G.P. Gonos I.F. Assimakopoulou F.E. Stathopulos I.A. Applying Genetic Algorithms for the Determination of the Parameters of the Electrostatic Discharge Current Equation Meas. Sci. Technol. 2006 17 2819 2827 10.1088/0957-0233/17/10/037

Issue

Electronics (Switzerland), vol. 14, pp. 1-14, 2025, Switzerland, https://doi.org/10.3390/electronics14214324

Цитирания (Citation/s):
1. Zhao, ZY, Bo, B, Li, XM, Yang, P, Jiang, DF, Wang, G, Wang, F, A Non-Cooperative Game-Based Retail Pricing Model for Electricity Retailers Considering Low-Carbon Incentives and Multi-Player Competition, ELECTRONICS, vol 14, 2025, issn: 2079-9292, art_no: ARTN 4713, doi: 10.3390/electronics14234713 - 2025 - в издания, индексирани в Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science