Autors: Stoynov, Y. D., Dineva P.S., Rangelov T.V.
Title: Boundary integral equation method for graded nanocracked magnetoelectroelastic half-plane with nanorelief
Keywords:

Abstract: The antiplane dynamic problem for a graded nanocracked magnetoelectroelastic half-plane with nanotopography is analyzed. A non-hypersingular traction boundary integral equation method, based on an analytically derived Green‘s function for a half-plane, is employed. The mechanical model integrates classical continuum mechanics with nonclassical boundary conditions described by the Gurtin–Murdoch surface elasticity model. The sensitivity of the generalized stress concentration field with respect to factors such as material gradients, surface elasticity, nanorelief and nanocrack characteristics, coupled material properties, and applied dynamic load properties is examined.

References

  1. Hierold, G., Jungen, A., Stampfer, C., Helbling, T.: Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators A 136, 51–61 (2007)
  2. Lau, K.T., Cheung, H.Y., Lu, J., Yin, Y.S., Hui, D., Li, H.L.: Carbon nanotubes for space and bio-engineering applications. J. Comput. Theor. Nanosci. 5, 23–35 (2008)
  3. Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., de Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)
  4. Lau, K.T., Hui, D.: The revolutionary creation of new advanced materials-carbon nanotube composites. Compos. Part B-Eng 33, 263–277 (2002)
  5. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic Publishers, London, UK (1999)
  6. Mozammel, M., Khajeh, M., Ilkhechi, N.N.: Effect of surface roughness of 316 L stainless steel substrate on the morphological and superhydrophobic property of TiO2 thin films coatings. Silicon 10, 2603–2607 (2018)
  7. Manolis, G.D., Dineva, P.S., Rangelov, T., Sfyris, D.: Mechanical models and numerical simulations in nanomechanics: a review across the scales. Eng. Anal. Bound. Elem. 128, 149–170 (2021)
  8. Narendar, S., Gopalakrishnan, S.: Strong nonlocalization induced by small scale parameter on terahertz flexural wave dispersion characteristics of a monolayer graphene. Phy. E 43(1), 423–430 (2010)
  9. Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Struct. 117, 196–219 (2017)
  10. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)
  11. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mach. Anal. 57, 291–323 (1975)
  12. Wan, J., Fan, Y.L., Gong, D.W., Shen, S.G., Fan, X.Q.: Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb. Modell. Simul. Mater. Sci. Eng. 7, 189–206 (1999)
  13. Ojaghnezhad, F., Shodja, H.M.: A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si (001) ideal and reconstructed surfaces. Philos. Mag. Lett. 92(1), 7–19 (2012)
  14. Zhang, P.W., Zhou, Z.G., Wang, B.: Dynamic behaviour of two collinear interace cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips. Appl. Math. Mech. 28, 615–625 (2007)
  15. Zhang, P.W., Zhou, Z.G., Wu, L.Z.: Behaviour of three parallel non-symmetric mode III cracks in a functionally graded material plane. J. Mech. Eng. Sci. 222, 2311–2330 (2008)
  16. Feng, W., Su, R.: Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int. J. Solids Struct. 43, 5196–5216 (2006)
  17. Feng, W., Su, R.: Dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic plate. Eur. J. Mech A/Solids 26, 363–379 (2007)
  18. Sladek, J., Sladek, V., Solek, P., Pan, E.: Fracture analysis of cracks in magnetoelectro-elastic solids by the MLPG. Comput. Mech. 42, 697–714 (2008)
  19. Sladek, J., Sladek, V., Solek, P., Zhang, C.: Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG. Int. J. Solids Str. 47, 1381–1391 (2010)
  20. Wünsche, M., Sáez, A., Garcia-Sánchez, F., Zhang, C.: Cracks in magnetoelectroelastic solids under impact loading. Key Eng. Mater. 417-418, 377–380 (2010)
  21. Rojas-Díaz, R., García-Sánchez, F., Sáez, A., Zhang, C.: Dynamic crack interactions in magnetoelectroelastic composite materials. Int. J. Fract. 157(1-2), 119–130 (2009)
  22. Rojas-Díaz, R., Sáez, A., García-Sánchez, F., Zhang, C.: Analysis of cracked magnetoelectroelastic composites under time-harmonic loading. Int. J. Solids Struct. 47, 71–80 (2010)
  23. Rangelov, T., Stoynov, Y., Dineva, P.: Dynamic fracture behavior of functionally graded magnetoelectroelastic solids by BIEM. Int. J. Solids Str. 48, 2987–2999 (2011)
  24. Stoynov, Y., Dineva, P.: Dynamic fracture of functionally graded magnetoelectroelastic composite materials. In: Todorov, M. (ed.) AIP Conference Proceedings 1629, Albena, Bulgaria, AIP Publishing LLC, pp. 327–335 (2014)
  25. Stoynov, Y., Dineva, P., Rangelov, T.: Wave scattering and stress concentration in a magneto-electro-elastic plate with a nano-crack by boundary integral equations. J. Theoret. Appl. Mech. 49, 203–223 (2019)
  26. Stoynov, Y., Dineva, P., Rangelov, T.: 2D problems in magneto-electro-elastic materials with a nano-crack. In: AIP Conference Proceedings 2172, 0700011–0700019 (2019)
  27. Dineva, P., Stoynov, Y., Rangelov, T.: Dynamic fracture behavior of nanocracked graded magnetoelectroelastic solid. Arch. Appl. Mech. 91(4), 1495–1508 (2021)
  28. Rangelov, T., Stoynov, Y., Dineva, P, Dynamic, R.: nanocracks interaction in graded magnetoelectroelastic soild. J. Theor. Appl. Mech. 52, 335–351 (2022)
  29. Wu, H., Ou, Zh.: The scattering of SH-waves by a nano arc-shaped hole on a half-plane. Acta Mech. 233, 1649–1662 (2022)
  30. Dineva, P., Gross, D., Müller R., Rangelov, T.: Dynamic Fracture of Piezoelectric Materials. Solutions of Time-harmonic problems via BIEM Solid Mechanics and its Applications, vol. 212, Springer International Publishing, Switzerland 2014.
  31. Rangelov, T., Stoynov, Y., Dineva, P.: Wave scattering in a cracked exponentially graded magnetoelectroelastic half-plane. ZAMM 104(10), e202400097:1–18 (2024)
  32. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Academic Press, New York, (1965)
  33. Soh, A.K., Liu, J.X.: On the constitutive equations of magnitoelectroelastic solids. J. Intell. Mater. Syst. Struct. 16, 597–602 (2005)
  34. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach Science Publisher, New York (1988)
  35. Goudeau, P., Renault, P., Villain, P., Coupeau, C., Pelosin, V., Boubeker, B.: Characterization of thin film elastic properties using x-ray diffraction and mechanical methods: Application to polycrystalline stainless steel. Thin Solid Films 398-399, 496–500 (2001)
  36. Hurley, D.C., Tewary, V.K., Richards, A.J.: Thin-film elastic-property measurements with laser-ultrasonic saw spectrometry. Thin Solid Films 398-399, 326–330 (2001)
  37. Cottone, G., Paola Di, M., Zingales, M.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phy. Rev. B 69(16), 165410 (2004)
  38. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic–force microscopy. Phys. Rev. B 73, 235409 (2006)
  39. Paulitschke, P., Seltner, N., Lebedev, A., Lorenz, H., Weig, F.M.: Size-independent Young's modulus of inverted conical GaAs nanowire resonators. App. Phys. Lett. 103(26), 261901 (2013)
  40. Hoagland, R.G., Daw, M.S., Hirth, J.P.: Some aspects of forces and fields in atomic models of crack tips. J. Mater. Res. 6, 2565–2571 (1991)
  41. Wünsche, M., Zhang, Ch., Sladek, J., Sladek, V., Saez, A., Garcia-Sanchez, F.: The influences of non-linear electrical, magnetic and mechanical boundary conditions on the dynamic intensity factors of magnetoelectroelastic solids. Eng. Fract. Mach. 97, 297–313 (2013)
  42. Zhang, C., Gross, D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publications, Southampton, (1998)
  43. Li, X.F.: Dynamic analysis of a cracked magneto-electro-elastic medium under anti-plane mechanical and in-plane electric and magnetic impacts. Int. J. Solids Str. 42, 3185–3205 (2005)
  44. Shenoy, V.B.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, 4039–4052 (2002)
  45. Mathematica 6.0 for MS Windows. Wolfram Research, Inc. Champaign, Illinois, (2007)
  46. Wuttke, F., Fontara, I-K., Dineva, P., Rangelov, T.: SH-wave propagation in a continuously inhomogeneous half-plane with free-surface relief by BIEM. Z. Angew. Math. Mech. 95(7), 714–729 (2015)
  47. Trifunac, M.D.: Scattering of plane SH waves by semi–cilindrical canyon. Earthq. Engng. Struct. Dyn. 1, 267–281 (1972)
  48. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Str. 44, 7988–8005 (2007)
  49. Tian, L., Rajapakse, R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)

Issue

ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 105, pp. e70196, 2025, Germany, https://doi.org/10.1002/zamm.70196

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus