Autors: Krol O., Sokolov V., Zhilevski, M. M., Mikhov, M. R.
Title: DEVELOPMENT OF MODULAR ANGULAR SPINDLE HEAD FOR MULTI-OPERATIONAL MACHINE WITH MODERNIZED DRIVE
Keywords: Bevel Drive, Machining Center, Preliminary Design, Rendering, Spindle Aggregate

Abstract: Published by Cefin Publishing House.In this paper, a comprehensive study of the rotary angular spindle head (ASH) design with a bevel gear drive is carried out. A variant of a preliminary design of a drive for a multi-operational machine tool equipped with a set of replaceable technological equipment is considered. A kinematic diagram of the main motion drive is proposed, oriented towards the process of machining hard-to-reach places of manufactured products. Advanced functionality of the integrated Creo Parametric system is used to build the ASH 3D project. In the Creo environment, using the procedure for creating an annular groove, a T-shaped contour of the "Contact plate" part groove is formed. For bevel gearing, a parameterized algorithm for constructing a spiral contour of a bevel gear tooth of the drive in the Creo Gears section is selected. To represent a more realistic image of the ASH assembly and its base components, the Render Studio module is used. The spacing of ASH individual components as a source of information at the stage of the manufacturability analysis for the designed object and its key elements is realized. A new approach to creating a two-stage bevel gear drive for modular spindle aggregates with minimum overall dimensions is proposed. The option of partitioning the total gear ratio by stages according to the criterion of bevel gears' teeth contact endurance is chosen as the main criterion. The lower limit of the gear ratio of the first stage at which the criterion of dimensions does not work is obtained. An alternative option for dividing the gear ratio from the condition of equal strength of the drive stages is also proposed. An experimental calculation of the reduction in the length of drive in range of gear ratios is carried out.

References

  1. Barbosa, M., Silva, F.J.G., Pimentel, C., & Gouveia, R.M. (2018). A Novel Concept of CNC Machining Center Automatic Feeder. 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2018), June 11-14, Columbus, OH, USAGlobal Integration of Intelligent Manufacturing and Smart Industry for Good of Humanity. Procedia Manufacturing Vol. 17. (pp. 952–959). https://doi.org/10.1016/j.promfg.2018.10.111
  2. Lynch, M. (2013). Machining Center. Setup and Operation. CNC Concept, Inc., Illinois.
  3. Yamazaki, T. (2016). Development of A Hybrid Multi-tasking Machine Tool: Integration of Additive Manufacturing Technology with CNC Machining. 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), Vol. 42. (pp. 81–86). Procedia CIRP. https://doi.org/10.1016/j.procir.2016.02.193
  4. Krol, O., & Sokolov, V. (2019). 3D modelling of angular spindle's head for machining centre. J. Phys.: Conf. Ser. 1278 012002. https://doi.org/10.1088/1742-6596/1278/1/012002
  5. ROMAI Robert Maier GmbH, Homepage, https://www.romai.de, last accessed 2025/05/05.
  6. Kushnir, E., Portman, V., Aguilar, A. et al. (2017). Layout evaluation at earlier stages of machine tool design: form-shaping function-based approach. Int J Adv Manuf Technol, 90, 3333– 3346. https://doi.org/10.1007/s00170-016-9667-0
  7. Xu, Z., Xi, F., Liu, L.; & Chen, L. (2017). A Method for Design of Modular Reconfigurable Machine Tools. Machines, 5, 5. https://doi.org/10.3390/machines5010005
  8. Stanciu, A., Țîțu, A. M., Hrybiuk, O., & Machado, J. C. (2024). Industry 4.0. Upsides and Downsides. Towards Industry 5.0. Lecture Notes in Networks and Systems. (pp. 84–93). https://doi.org/10.1007/978-3-031-70670-7_7
  9. Basova, Y., Dobrotvorskiy, S., Balog, M., Iakovets, A., Amine, C.M., & Zinchenko, A. (2023). Increasing SME Supply Chain Resilience in the Face of Rapidly Changing Demand with 3D Model Visualisation. International Journal of Mechatronics and Applied Mechanics, 14, 35–47. https://doi.org/10.17683/ijomam/issue14.5
  10. Brecher, C., Fey, M., & Daniels, M. (2016). Modeling of Position-, Tool-and Workpiece-Dependent Milling Machine Dynamics. High Speed Mach., 2, 15–25. https://doi.org/10.1515/hsm-2016-0003
  11. Ciobanu, R, Donţu, O., Besnea, D., Cuta, A.N., Doina, C. & Nachila, C. (2014). 3D CAD/CAM and rapid prototyping applied for malta cross mechanism fabrication. Romanian Review Precision Mechanics, Optics and Mechatronics, 46, 67–70.
  12. Basova, Y., Dobrotvorskiy, S., Balog, M., Iakovets, A., Amine, C.M., & Zinchenko, A. (2023). Increasing SME Supply Chain Resilience in the Face of Rapidly Changing Demand with 3D Model Visualisation. International Journal of Mechatronics and Applied Mechanics, 14, 35–47. https://doi.org/10.17683/ijomam/issue14.5
  13. Ivanov, V., Dehtiarov, I., Pavlenko, I., Liaposhchenko, O., & Zaloga, V. (2019). Parametric optimization of fixtures for multiaxis machining of parts. In: Hamrol A, Kujawińska A, Barraza M. (eds) Advances in Manufacturing II. MANUFACTURING2019. LNME, Vol. 2. (pp. 335– 347). Springer, Cham. https://doi.org/10.1007/978-3-030-18789-7_28
  14. Krol, O. (2021). Modeling of Worm Gear Design with Non-clearance Engagement. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2021, LNME, (pp. 36–46.) Springer, Cham. https://doi.org/10.1007/978-3-030-54814-8_5
  15. Sokolov, V. (2021). Hydrodynamics of Flow in a Flat Slot with Boundary Change of Viscosity. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering: Vol. 2 (pp. 1172–1181). Springer, Cham. https://doi.org/10.1007/978-3-030-54817-9_136
  16. Rogovyi, A., Shudryk, O., Tulska, A, Basova Y., et al. (2023). Using modern mechanical design methods for determining the main characteristics of a cryogenic centrifugal pump. International Journal of Mechatronics and Applied Mechanics 13.(198–208). https://doi.org/10.17683/ijomam/issue13.24
  17. Zhilevski, M., Mikhov, M., Zhilevska, M. (2021). Productivity Improvement in a Class of CNC Machine Tools. Proceedings of the 2021 International Conference Automatics and Informatics (ICAI). Varna. Bulgaria. IEE Xplore. (pp. 214 – 218). https://doi.org/10.1109/ICAI52893.2021.9639792
  18. Cui, Y., Liu, C., Mu, H., Jiang, H., Xu, F., Liu, Y., & Hu, Q. (2024). Analysis of Mechanical Characteristics of the Swing Angle Milling Head of a Heavy Computer Numerical Control Milling Machine and Research on the Light Weight of a Gimbal. Materials, 17, 324. https://doi.org/10.3390/ma17020324
  19. Lin, X., Li, Y., Song, W., & Liu, X. (2022). Application and Key Research Technology of Angle Head. J. Phys.: Conf. Ser. 2187 012029. https://doi.org/10.1088/1742-6596/2187/1/012029
  20. Mikhov, M., & Zhilevski, M. (2019). Study and Performance Improvement of the Drive Systems for a Class of Machine Tools. Proceedings of the 14th International Conference on Modern Technologies in Manufacturing (MTeM 2019), Cluj-Napoca, Romania, MATEC Web of Conferences, Vol. 299, (pp. 1-6). https://doi.org/10.1051/matecconf/201929905003
  21. Shevchenko, S., Mukhovaty, A., & Krol, O. (2021). Modification of Two-Stage Coaxial Gearbox. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2021, LNME, (pp. 28–35). Springer, Cham https://doi.org/10.1007/978-3-030-54814-8_4
  22. Fomin, O., & Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European journal of enterprise technologies, 2(7(110)), 6–14. https://doi.org/10.15587/1729-4061.2021.220534
  23. Grinek, A.V., Rubina, A.V., Boychuk, I.P. et al. (2018). Modeling and analysis of dynamic characteristics of carrier system of machining center in MSC. Adams. IOP Conf. Ser.: Mater. Sci. Eng. 327 022088. https://doi.org/10.1088/1757-899X/327/2/022088
  24. Vora, C., & Patel, T. (2023) Kinematics of machines. Engineering publisher, Ahmedabad, Guirat, India.
  25. Wyndorps, P. (2022). 3D-Konstruktion mit Creo Parametric und Windchill: PTC Creo 4.0 und PTC. Windchill, Europa-Lehrmittel (in German).
  26. Shin, R.H. (2020). Parametric Modeling with Creo Parametric 7.0. SDC Publisher, Mission, USA.
  27. Bijonowski, B. (2015). A practical approach for modeling a bevel gear. Gear technology 2015 March/April. 68–75.
  28. Kheifets A.L. (2016). Geometrically accurate computer 3D models of gear drives and hob cutters. Procedia Engineering, vol. 150 pp. 1098-1106. https://doi.org/10.1016/j.proeng.2016.07.220
  29. Verma V., & Walia, E. (2010). 3D rendering – techniques and challenges. National conference on computational instrumentation. NCCI 2010. CSIO Chandigarh (pp. 72-77).
  30. Litvin, F. (1989). Theory of Gearing, Tech. rep. University of Illinois, Chicago.
  31. Shevchenko, S., Mukhovaty, A., & Krol, O. (2019). Two-stage gearbox. UA Patent Application 135196, 23 Juni 2019.

Issue

International Journal of Mechatronics and Applied Mechanics, vol. 1, pp. 19-29, 2025, Romania, https://doi.org/10.17683/ijomam/issue21.2

Copyright International Journal of Mechatronics and Applied Mechanics – IJOMAM

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus