Autors: Yordanova, S. T., Stoitseva-Delicheva, D. R. Title: TSK Modelling of Nonlinear Plants Using Experimental Data for Control Algorithms Keywords: genetic algorithms, linearising control, nonlinear plant, predictive control, Smith predictor, TSK plant modellingAbstract: The plants in modern industry are difficult to model due to their nonlinearity, inertia, and changes with operation modes, points and environment. Models are important in design and optimisation of sophisticated control algorithms required for ensuring high quality of the products and efficient energy and materials consumption. The present research focuses on the development of a novel methodology for Takagi-Sugeno-Kang (TSK) modelling and model validation of complex nonlinear plants. It is based on expert knowledge and parameter optimisation using genetic algorithms (GA) with experimental data and simulations. A TSK plant, inverse plant and predictive plant models are derived for the temperature in a laboratory fruit dryer. They are applied in PID-based nonlinear Smith predictor, predictive and linearising control which can be easily implemented in programmable logic controllers for broad real time applications. Simulations show increased closed loop system dynamic accuracy and energy efficiency. References - Khalil, H.K. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ 07458, 1996, 2nd ed., ISBN 0-13-P8U24-8
- Slotine J. J., Li, W. Applied Nonlinear Control. Englewood Cliffs, N.J: Prentice-Hall, 1991.
- Demuth H., Beale, M. Neural Network Toolbox for Use with MATLAB. Users Guide, The Mathworks Inc., 2018
- Haykin, S. Neural Networks and Learning Machines. 3rd ed., Upper Saddle River, New Jersey, 2009, ISBN-13: 978-0-13-147139-9.
- Omar, N., Al-zebari, A., Sengur, A. (2021) Deep learning approach to predict forest fires using meteorological measurements. 2nd Int. Informatics and Software Eng. Conf. (IISEC), Ankara, Turkey, 2021, pp. 1-4, doi: 10.1109/IISEC54230.2021.9672446.
- Rahman, MHRF, Devanathan, R., Kuanyi, Zh. (2000) Neural network approach for linearizing control of nonlinear process plants. IEEE Trans. on Industrial Electronics 47(2):470-477
- Ahmed S, Petrov M, Ichtev A (2010) Fuzzy model-based predictive control applied to multivariable level control of multi tank system. Proc. 5th IEEE Int. Conf. Intelligent Systems, 7-9 July, pp. 456-461.
- Fuzzy Logic Toolbox: User?s Guide for Use with MATLAB. The Math Works, Inc. Natick, MA, 1998.
- Nafisah N., Syamsiana I. N., Putri R. I., Kusuma W., Sumari A. D. W. (2024), Implementation of fuzzy logic control algorithm for temperature control in robusta rotary dryer coffee bean dryer. MethodsX, 12, ISSN 2215-0161
- Osama, I.H., Ayman, A. A., Ahmed, A. A-I. (2012) Parameter tuning via genetic algorithm of fuzzy controller for fire tube boiler. Int. J. of Intell. Syst. and Appl. 4: 9-18
- Yordanova, S., Merazchiev, D., Jain, L. (2015) A two-variable fuzzy control design with application to an air-conditioning system. IEEE Trans. on Fuzz. Syst. 23(2): 474-481, ISSN: 1063-6706
- Yordanova, S., Stoitseva-Delicheva, D. (2022) Parallel distributed compensation for the control of processes in anaerobic organic wastewater treatment. Proc. IEEE Int. conf. Automatics & Informatics?2022, Oct.6-8, Varna, Bulgaria, 388-393
- Jang J-S R (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Syst., Man, and Cybern. 23(3): 665-685.
- Kaur A, Kaur A. (2012) Development of neuro fuzzy controller algorithm for air conditioning system. Int. J. of Soft Comp. and Eng.4: 1667-1671.
- Shahbazian, M., Jazayerirad, H., Ebnali M. (2014) ANFIS based identification and control of distillation process, J. of Autom. and Contr. 2(2): 49-56
- Haupt, R.L., Haupt, S. El. Practical Genetic Algorithms. 2nd ed., Hoboken, John Wiley & Sons, NJ, 2004, ISBN 0-471-45565-2.
- MATLAB-Genetic Algorithm and Direct Search Toolbox: User?s Guide. The MathWorks, Inc., Natick, MA, 2004.
- Yazid, E., Garratt, M., Santoso, F. (2019) Position control of a quadcopter drone using evolutionary algorithms-based self-Tuning for first-order Takagi-Sugeno-Kang fuzzy logic autopilots. Appl. Soft Comp. 78, 373-392, https://doi.org/10.1016/j.asoc.2019.02.023.
- Tanaka, K., Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York, USA, 2001, ISBN 0-471-22459-6.
- Yordanova, S. (2016) Design of Fuzzy Supervisor-based Adaptive Process Control Systems. In: New Approaches in Intelligent Control: Techniques, Methodologies and Applications, Book series "Intelligent Systems Reference Library", Eds: K. Nakamatsu, R. Kountchev, Springer Int. Publishing, Switzerland, 107, Chapter 1: 1-42
- Nikova H, Yordanova S, Deliyski R (2023), Application of artificial neural network in wildfire early prediction systems. WSEAS Trans. on Environment and Development, vol. 19, pp. 1410-1420
- Yordanova, S., Ichtev, A. (2017) A Model-free neuro-fuzzy predictive controller for compensation of nonlinear plant inertia and time delay. Informatica 28(4): 749-766, ISSN: 0868-4952
- Kumar, R, Singla, S.K., Chopra, V. (2015) Comparison among some well-known control schemes with different tuning methods. J. Appl. Res. Technol. 13(3): 409-415. doi:10.1016/j.jart.2015.07.007.
- Neshkov, T., Yordanova, S., Topalova, I. Process Control and Production Automation. Technical University of Sofia, Sofia, 2007, ISBN 978-954-438-597-2.
- Astrom K. J., Wittenmark B. J. Adaptive Control. 2nd ed., Dover Publications, Inc., New York, 2008, ISBN-13: 978-0-486-46278-3.
- Morari, M., Zafiriou, B. Robust Process Control. Prentice Hall. New Jersey, 1989, ISBN 0-13-782153-0.
- Yordanova, S., Stoitseva-Delicheva, D. (2024) Prospects of intelligent techniques for energy efficient control of drying process. Proc. IEEE Int. conf. Automatics and Informatics?2024 (ICAI?24), Oct.10-12, Varna, Bulgaria, pp. 205-211
- Delou, P.; Riberio, L.; Paiva, C.; Niederberger, J.; Gomes, M.; Secchi, A. A real-Time optimization strategy for small-scale facilities and implementation in a gas processing unit. Processes 2021, 9, 1179
- Gao, Z. Special Issue on "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes".Processes?23, 11, 207.
- Yordanova S., Assenov V., Nedic, Z. (2004) Application of artificial neural networks for linearising control of a non-linear plant. Proc. of the 3rd Japan-Australia-New Zealand Joint Seminar JANZS?2004, Auckland, New Zealand, 22-23 Jan., 2004, 165-171.
Issue
| ICARAI 2025 - International Conference Automatics, Robotics and Artificial Intelligence, Proceedings, 2025, Albania, https://doi.org/10.1109/ICARAI67046.2025.11137814 |
|