Autors: Tsounidi D., Petrou P., Aleksandrova, M. P., Tsanev, T. D., Tserepi A., Gogolides E., Bernasik A., Awsiuk K., Janiszewska N., Budkowski A., Raptis I.
Title: Carbyne-Enriched Carbon Coatings on Silicon Chips as Biosensing Surfaces with Stable-over-Time Biomolecule Binding Capacity
Keywords: amine–biotin derivative, biosensors, C-reactive protein, carbon coatings, carbyne-enriched, White Light Reflectance Spectroscopy

Abstract: Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO2/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. At first, the carbyne-enriched coatings were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Atomic Force Microscopy, and the sessile drop method to assess their composition, structure, and wettability. After that, chips with carbyne-enriched coatings were modified with biomolecules through physical absorption or covalent bonding, and the respective biomolecular interactions were monitored in real-time by White Light Reflectance Spectroscopy (WLRS). In both cases, SiO2/Si chips modified with an aminosilane were used as reference substrates. Physical adsorption was tested through immobilization of an antibody against C-reactive protein (CRP) to enable its immunochemical detection, whereas covalent bonding was tested through coupling of biotin and monitoring its reaction with streptavidin. It was found that the carbyne-enriched carbon-coated chips retained both their antibody adsorption capability and their covalent bonding ability for over 18 months, while the modified with aminosilane SiO2/Si chips lost 90% of their antibody adsorption capacity and covalent bonding ability after two months of storage. These findings highlight the strong potential of carbyne-enriched carbon-coated chips as robust biosensing substrates, with applications extending beyond WLRS.

References

  1. Oliverio M. Perotto S. Messina G.C. Lovato L. De Angelis F. Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs ACS Appl. Mater. Interfaces 2017 9 29394 29411 10.1021/acsami.7b01583
  2. Antoniou M. Tsounidi D. Petrou P.S. Beltsios K.G. Kakabakos S.E. Functionalization of silicon dioxide and silicon nitride surfaces with aminosilanes for optical biosensing applications Med Devices Sens. 2020 3 e10072 10.1002/mds3.10072
  3. Udomsom S. Mankong U. Paengnakorn P. Theera-Umpon N. Novel Rapid Protein Coating Technique for Silicon Photonic Biosensor to Improve Surface Morphology and Increase Bioreceptor Density Coatings 2021 11 595 10.3390/coatings11050595
  4. Puumala L.S. Grist S.M. Morales J.M. Bickford J.R. Chrostowski L. Shekhar S. Cheung K.C. Biofunctionalization of Multiplexed Silicon Photonic Biosensors Biosensors 2022 13 53 10.3390/bios13010053
  5. Joshi P. Mishra R. Narayan R.J. Biosensing applications of carbon-based materials Curr. Opin. Biomed. Eng. 2021 18 100274 10.1016/j.cobme.2021.100274
  6. Ji G. Tian J. Xing F. Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules Int. J. Mol. Sci. 2022 23 10838 10.3390/ijms231810838 36142748
  7. Hwang H.S. Jeong J.W. Kim Y.A. Chang M. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications Micromachines 2020 11 814 10.3390/mi11090814
  8. Kour R. Arya S. Young S.-J. Gupta V. Bandhoria P. Khosla A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors J. Electrochem. Soc. 2020 167 037555 10.1149/1945-7111/ab6bc4
  9. Tîlmaciu C.-M. Morris M.C. Carbon nanotube biosensors Front. Chem. 2015 3 59 10.3389/fchem.2015.00059
  10. Gupta B.D. Pathak A. Semwal V. Carbon-Based Nanomaterials for Plasmonic Sensors: A Review Sensors 2019 19 3536 10.3390/s19163536
  11. Su D. Li H. Yan X. Lin Y. Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides TrAC Trends Anal. Chem. 2021 134 116126 10.1016/j.trac.2020.116126
  12. Yang G. Synthesis, properties, and applications of carbyne nanocrystals Mater. Sci. Eng. R: Rep. 2022 151 100692 10.1016/j.mser.2022.100692
  13. Liu M. Artyukhov V.I. Lee H. Xu F. Yakobson B.I. Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope ACS Nano 2013 7 10075 10082 10.1021/nn404177r
  14. Agwa M.A. Eltaher M.A. Vibration of a carbyne nanomechanical mass sensor with surface effect Appl. Phys. A 2016 122 335 10.1007/s00339-016-9934-9
  15. Ma C.R. Xiao J. Yang G.W. Giant nonlinear optical responses of carbyne J. Mater. Chem. C 2016 4 4692 4698 10.1039/C6TC00648E
  16. Xiao J. Li J. Yang G. Molecular Luminescence of White Carbon Small 2017 13 1603495 10.1002/smll.201603495
  17. Yang F. Zheng Z. Lin Z. Wang B. Liu P. Yang G. Visible-light-driven room-temperature gas sensor based on carbyne nanocrystals Sens. Actuators B Chem. 2020 316 128200 10.1016/j.snb.2020.128200
  18. Aleksandrova M. Kolev G. Brigadin A. Lukin A. Gas-Sensing Properties of a Carbyne-Enriched Nanocoating Deposited onto Surface Acoustic Wave Composite Substrates with Various Electrode Topologies Crystals 2022 12 501 10.3390/cryst12040501
  19. Aleksandrova M. Ustova B. Tsanev T. Raptis I. Tserepi A. Gogolides E. Kolev G. Microheater Topology for Advanced Gas Sensor Applications with Carbyne-Enriched Nanomaterials Appl. Sci. 2024 14 1728 10.3390/app14051728
  20. Yang F. Chen T. Wu X. Chen Y. Yang G. A hybrid gold-carbyne nanocrystals platform for light-induced crossover of redox enzyme-like activities Chem. Eng. J. 2021 408 127244 10.1016/j.cej.2020.127244
  21. Chen T. Yang F. Wu X. Chen Y. Yang G. A fluorescent and colorimetric probe of carbyne nanocrystals coated Au nanoparticles for selective and sensitive detection of ferrous ions Carbon 2020 167 196 201 10.1016/j.carbon.2020.06.003
  22. Karachaliou C.-E. Koukouvinos G. Goustouridis D. Raptis I. Kakabakos S. Livaniou E. Petrou P. Recent Developments in the Field of Optical Immunosensors Focusing on a Label-Free, White Light Reflectance Spectroscopy-Based Immunosensing Platform Sensors 2022 22 5114 10.3390/s22145114 35890791
  23. Tsounidi D. Tsaousis V. Xenos N. Kroupis C. Moutsatsou P. Christianidis V. Goustouridis D. Raptis I. Kakabakos S. Petrou P. Simultaneous determination of procalcitonin and interleukin-6 in human serum samples with a point-of-care biosensing device Talanta 2023 258 124403 10.1016/j.talanta.2023.124403
  24. Tsounidi D. Koukouvinos G. Petrou P. Misiakos K. Zisis G. Goustouridis D. Raptis I. Kakabakos S.E. Rapid and sensitive label-free determination of aflatoxin M1 levels in milk through a White Light Reflectance Spectroscopy immunosensor Sensors Actuators B: Chem. 2019 282 104 111 10.1016/j.snb.2018.11.026
  25. Gajos K. Sanocka K. Wytrwał M. Dąbczyński P. Budkowski A. pH-dependent orientation of physisorbed and chemisorbed antibodies on silicon determined with TOF-SIMS and its effect on in-flow capture assay monitored with WLRS sensor Appl. Surf. Sci. 2024 656 159644 10.1016/j.apsusc.2024.159644
  26. Gajos K. Orzech A. Sanocka K. Petrou P. Budkowski A. Covalent and Non-covalent In-Flow Biofunctionalization for Capture Assays on Silicon Chips: White Light Reflectance Spectroscopy Immunosensor Combined with TOF-SIMS Resolves Immobilization Stability and Binding Stoichiometry Langmuir 2023 39 10216 10229 10.1021/acs.langmuir.3c01181
  27. Pan B. Xiao J. Li J. Liu P. Wang C. Yang G. Carbyne with finite length: The one-dimensional sp carbon Sci. Adv. 2015 1 e1500857 10.1126/sciadv.1500857
  28. Hu A. Griesing S. Rybachuk M. Lu Q.-B. Duley W.W. Nanobuckling and x-ray photoelectron spectra of carbyne-rich tetrahedral carbon films deposited by femtosecond laser ablation at cryogenic temperatures J. Appl. Phys. 2007 102 074311 10.1063/1.2786708
  29. Hu A. Rybachuk M. Lu Q.-B. Duley W.W. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation Appl. Phys. Lett. 2007 91 131906 10.1063/1.2793628
  30. Drozdov M. Ieshkin A. Streletskiy O. Nishchak O.Y. Belykh S. Tolstoguzov A. TOF-SIMS for carbon hybridization state analysis Carbon 2022 186 83 90 10.1016/j.carbon.2021.10.007
  31. Zatsepin A.F. Buntov E.A. Zatsepin D.A. Boqizoda D.A. Guseva M.B. Vyatkina S.P. Kas’yAnova A.V. Plasma Synthesis and XPS Attestation of Thin-Film Carbon Coatings with Predetermined sp-Hybridization Phys. At. Nucl. 2018 81 1660 1663 10.1134/S1063778818110224
  32. Piedade A.P. Cangueiro L. Influence of Carbyne Content on the Mechanical Performance of Nanothick Amorphous Carbon Coatings Nanomaterials 2020 10 780 10.3390/nano10040780
  33. Ansar W. Ghosh S. C-reactive protein and the biology of disease Immunol. Res. 2013 56 131 142 10.1007/s12026-013-8384-0
  34. Landry A. Docherty P. Ouellette S. Cartier L.J. Causes and outcomes of markedly elevated C-reactive protein levels Can. Fam. Physician 2017 63 e316 e323 PMC5471098 28615410
  35. Grondman I. Pirvu A. Riza A. Ioana M. Netea M.G. Biomarkers of inflammation and the etiology of sepsis Biochem. Soc. Trans. 2020 48 1 14 10.1042/BST20190029 32049312
  36. Sypabekova M. Hagemann A. Rho D. Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications Biosensors 2022 13 36 10.3390/bios13010036 36671871
  37. Nečas D. Klapetek P. Gwyddion: An open-source software for SPM data analysis Open Phys. 2012 10 181 188 10.2478/s11534-011-0096-2
  38. Owens D.K. Wendt R.C. Estimation of the surface free energy of polymers J. Appl. Polym. Sci. 1969 13 1741 1747 10.1002/app.1969.070130815
  39. Biesinger M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review Appl. Surf. Sci. 2022 597 153681 10.1016/j.apsusc.2022.153681
  40. Ferrari A.C. Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon Phys. Rev. B 2000 61 14095 14107 10.1103/PhysRevB.61.14095
  41. Ravagnan L. Siviero F. Lenardi C. Piseri P. Barborini E. Milani P. Casari C.S. Bassi A.L. Bottani C.E. Cluster-Beam Deposition and in situ Characterization of Carbyne-Rich Carbon Films Phys. Rev. Lett. 2002 89 285506 10.1103/PhysRevLett.89.285506
  42. Casari C.S. Bassi A.L. Ravagnan L. Siviero F. Lenardi C. Piseri P. Bongiorno G. Bottani C.E. Milani P. Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films Phys. Rev. B 2004 69 075422 10.1103/PhysRevB.69.075422
  43. Barborini E. Piseri P. Bassi A.L. Ferrari A. Bottani C. Milani P. Synthesis of carbon films with controlled nanostructure by separation of neutral clusters in supersonic beams Chem. Phys. Lett. 1999 300 633 638 10.1016/S0009-2614(98)01449-3
  44. Swain B.P. Dusane R.O. Multiphase structure of hydrogen diluted a-SiC:H deposited by HWCVD Mater. Chem. Phys. 2006 99 240 246 10.1016/j.matchemphys.2005.10.018
  45. Popescu A.C. Stan G.E. Duta L. Nita C. Popescu C. Surdu V.-A. Husanu M.-A. Bita B. Ghisleni R. Himcinschi C. et al. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition Materials 2015 8 3284 3305 10.3390/ma8063284
  46. Irmer G. Dorner-Reisel A. Micro-Raman Studies on DLC coatings Adv. Eng. Mater. 2005 7 694 705 10.1002/adem.200500006
  47. Milenov T. Dikovska A. Avdeev G. Avramova I. Kirilov K. Karashanova D. Terziyska P. Georgieva B. Arnaudov B. Kolev S. et al. Pulsed laser deposition of thin carbon films on SiO2/Si substrates Appl. Surf. Sci. 2019 480 323 329 10.1016/j.apsusc.2019.02.220
  48. Casari C.S. Milani A. Carbyne: From the elusive allotrope to stable carbon atom wires MRS Commun. 2018 8 207 219 10.1557/mrc.2018.48
  49. Streletskiy O. Zavidovskiy I. Nischak O. Pavlikov A. Multiphonon replicas in Raman spectra and conductivity properties of carbon films with different concentrations of sp1-bonds Thin Solid Films 2018 671 31 35 10.1016/j.tsf.2018.12.025
  50. Chepyala R. Panda S. Tunable surface free energies of functionalized molecular layers on Si surfaces for microfluidic immunosensor applications Appl. Surf. Sci. 2013 271 77 85 10.1016/j.apsusc.2013.01.094
  51. Chen J.S. Lau S.P. Tay B.K. Chen G.Y. Sun Z. Tan Y.Y. Tan G. Chai J.W. Surface energy of amorphous carbon films containing iron J. Appl. Phys. 2001 89 7814 7819 10.1063/1.1375808
  52. Ostrovskaya L. Perevertailo V. Ralchenko V. Dementjev A. Loginova O. Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films Diam. Relat. Mater. 2002 11 845 850 10.1016/S0925-9635(01)00636-7
  53. Beucher L. Schlebrowski T. Rohe K. Wehner S. Fischer C. Surface treatment of biopolymer films Polylactic acid and Polyhydroxybutyrat with angular changing oxygen plasma–More than just gradual purification Surfaces Interfaces 2022 30 101856 10.1016/j.surfin.2022.101856
  54. Mädler S. Bich C. Touboul D. Zenobi R. Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities J. Mass Spectrom. 2009 44 694 706 10.1002/jms.1544 19132714
  55. Tamayo A. Muñoz J. Martínez-Domingo C. Mas-Torrent M. Magnetic carbon gate electrodes for the development of electrolyte-gated organic field effect transistor bio-sensing platforms J. Mater. Chem. C 2023 11 11912 11919 10.1039/D3TC01655B
  56. Lin W.-Z. Chen Y.-H. Liang C.-K. Liu C.-C. Hou S.-Y. A competitive immunoassay for biotin detection using magnetic beads and gold nanoparticle probes Food Chem. 2019 271 440 444 10.1016/j.foodchem.2018.07.152
  57. Suganuma M. Kubo T. Ishiki K. Tanaka K. Suto K. Ejima D. Toyota M. Tsumoto K. Sato T. Nishikawa Y. Mirror-image streptavidin with specific binding to L-biotin, the unnatural enantiomer Sci. Rep. 2022 12 1 9 10.1038/s41598-022-13763-4 35688934

Issue

Nanomaterials, vol. 15, pp. 1384, 2025, Switzerland, https://doi.org/10.3390/nano15181384

Цитирания (Citation/s):
1. Nioras, D, Kefallinou, D, Ioannou, D, Panes-Ruiz, LA, Ibarlucea, B, Cuniberti, G, Lan, TS, Tserepi, A, Gogolides, E, Enhanced Mechanical Durability of Polymeric Nanowires via Carbyne-Enriched Plasma Coatings for Bactericidal Action, COATINGS, vol 15, 2025, issn: 2079-6412, art_no: ARTN 1247, doi: 10.3390/coatings15111247 - 2025 - в издания, индексирани в Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science