Autors: Das D., Taralova I., Loiseau J.J., Slavov, T. N., Pandey M. Title: Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization Keywords: Duffing oscillator, fractional-order systems, frequency domain analysis, Grünwald–Letnikov characterization, memory effects, nonlinear dynamics, pseudoinverse estimation, system identificationAbstract: Fractional-order models provide a powerful framework for capturing memory-dependent and viscoelastic dynamics in mechanical systems, which are often inadequately represented by classical integer-order characterizations. This study addresses the identification of dynamic parameters in both single-degree-of-freedom (1-DOF) and three-degree-of-freedom (3-DOF) Duffing oscillators with fractional damping, modeled using the Grünwald–Letnikov characterization. The 1-DOF system includes a cubic nonlinear restoring force and is excited by a harmonic input to induce steady-state oscillations. For both systems, time domain simulations are conducted to capture long-term responses, followed by Fourier decomposition to extract steady-state displacement, velocity, and acceleration signals. These components are combined with a GL-based fractional derivative approximation to construct structured regressor matrices. System parameters—including mass, stiffness, damping, and fractional-order effects—are then estimated using pseudoinverse techniques. The identified models are validated through a comparison of reconstructed and original trajectories in the phase space, demonstrating high accuracy in capturing the underlying dynamics. The proposed framework provides a consistent and interpretable approach for frequency domain system identification in fractional-order nonlinear systems, with relevance to applications such as mechanical vibration analysis, structural health monitoring, and smart material modeling. References - Podlubny I. Fractional Differential Equations Academic Press San Diego, CA, USA 1998
- Chakraverty S. Jena R.M. Jena S.K. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications John Wiley & Sons Hoboken, NJ, USA 2022
- Chen Y. Moore K.L. Fractional order control—A tutorial Proceedings of the 2009 American Control Conference St. Louis, MO, USA 10–12 June 2009 1397 1411
- Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics Fractals Fract. Calc. Contin. Mech. 1997 378 291 348
- Herrmann R. Fractional Calculus: An Introduction for Physicists World Scientific Singapore 2011
- Chen B. Li C. Wilson B. Huang Y. Fractional Modeling and Analysis of Coupled MR Damping System IEEE/CAA J. Autom. Sin. 2016 3 288 294 10.1109/JAS.2016.7508804
- Noël J.P. Kerschen G. Nonlinear vibration modes of symmetric and asymmetric systems: Theory and applications Mech. Syst. Signal Process. 2015 74 18 36
- Mikhlin Y. Avramov K.V. Nonlinear Normal Modes of Vibrating Mechanical Systems: 10 Years of Progress Appl. Mech. Rev. 2024 76 050801 10.1115/1.4063593
- Tang Y. Peng Y. He G. Liang W. Zhang W. P-Bifurcation Analysis for a Fractional Damping Stochastic Nonlinear Equation with Gaussian White Noise Fractal Fract. 2023 7 408 10.3390/fractalfract7050408
- Li G. Xie R. Yang H. Study on fractional-order coupling of high-order Duffing oscillator and its application Chaos Solitons Fractals 2024 186 115255 10.1016/j.chaos.2024.115255
- Baleanu D. Sajjadi S.S. Jajarmi A. Defterli Ö. On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control Adv. Differ. Equ. 2021 2021 234 10.1186/s13662-021-03393-x
- Qian K. Tian L. Bao J. Frequency-domain physical constrained neural network for nonlinear system dynamic prediction Eng. Appl. Artif. Intell. 2023 122 106127 10.1016/j.engappai.2023.106127
- Breunung T. Balachandran B. Frequency response based identification of nonlinear oscillators J. Sound Vib. 2025 594 118651 10.1016/j.jsv.2024.118651
- Yang Y. Liu C. Lai S.-K. Chen Z. Chen L. Frequency-dependent equivalent impedance analysis for optimizing vehicle inertial suspensions Nonlinear Dyn. 2025 113 9373 9398 10.1007/s11071-024-10641-8
- Franczyk B. Maniowski M. Gołdasz J. Frequency-dependent automotive suspension damping systems: State of the art review Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024 238 2491 2503 10.1177/09544070231174280
- Al-Souqi K. Kadri K. Emam S. A Review on Vibration Control Using Piezoelectric Shunt Circuits Appl. Sci. 2025 15 6035 10.3390/app15116035
- Franczyk B. Gołdasz J. Modelling and experimental study of a passive frequency-dependent vehicle suspension damper Acta Mech. Et Autom. 2024 18 409 418 10.2478/ama-2024-0045
- Tuwa P.R.N. Molla T. Noubissie S. Kingni S.T. Rajagopal K. Analysis of a quarter car suspension based on a Kelvin–Voigt viscoelastic model with fractional-order derivative Int. J. -Non-Linear Mech. 2021 137 103818 10.1016/j.ijnonlinmec.2021.103818
- Sofi A. Nonlinear vibrations of beams with fractional derivative elements crossed by moving loads Int. J. -Non-Linear Mech. 2024 159 104567 10.1016/j.ijnonlinmec.2023.104567
- Han Y.X. Zhang J.X. Wang Y.L. Dynamic behavior of a two-mass nonlinear fractional-order vibration system Front. Phys. 2024 12 1452138 10.3389/fphy.2024.1452138
- Yang X. Zeng S. Liu C. Liu X. Wang Z. Yang Y. Optimal design and performance evaluation of HMDV inertial suspension based on generalized skyhook control Int. J. Struct. Stab. Dyn. B 2025 25 2550069 10.1142/S0219455425500695
- Wang Z. Liu C. Zheng X. Zhao L. Qiu Y. Advancements in semi-active automotive suspension systems with magnetorheological dampers: A review Appl. Sci. 2024 14 7866 10.3390/app14177866
- Kimball J.B. DeBoer B. Bubbar K. Adaptive control and reinforcement learning for vehicle suspension control: A review Annu. Rev. Control 2024 58 100974 10.1016/j.arcontrol.2024.100974
- Yu M. Evangelou S.A. Dini D. Advances in active suspension systems for road vehicles Engineering 2024 33 160 177 10.1016/j.eng.2023.06.014
- Koeller R. Applications of Fractional Calculus to the Theory of Viscoelasticity J. Appl. Mech. 1984 51 299 307 10.1115/1.3167616
- Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models World Scientific Singapore 2022
- Valério D. Sá da Costa J.S. Identifying Digital and Fractional Transfer Functions from a Frequency Response Int. J. Control 2011 84 445 457 10.1080/00207179.2011.560397
- Li Y. Zhao W. Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations Appl. Math. Comput. 2010 216 2276 2285 10.1016/j.amc.2010.03.063
- Guariglia E. Guido R.C. Dalalana G.J. From Wavelet Analysis to Fractional Calculus: A Review Mathematics 2023 11 1606 10.3390/math11071606
- Li Y. Sun N. Numerical Solution of Fractional Differential Equations Using the Generalized Block Pulse Operational Matrix Comput. Math. Appl. 2011 62 1046 1054 10.1016/j.camwa.2011.03.032
- Boyd J.P. Chebyshev and Fourier Spectral Methods Courier Corporation Mumbai, India 2001
- Shen J. Tang T. Wang L.L. Spectral Methods: Algorithms, Analysis and Applications Springer Science & Business Media Berlin/Heidelberg, Germany 2011 Volume 41
- Fornberg B. A Practical Guide to Pseudospectral Methods Cambridge University Press Cambridge, UK 1998 Volume 1
- Ljung L. Glad T. Hansson A. Modeling and Identification of Dynamic Systems Studentlitteratur Lund, Sweden 2021
- Scherer R. Kalla S.L. Tang Y. Huang J. The Grünwald–Letnikov method for fractional differential equations Comput. Math. Appl. 2011 62 902 917 10.1016/j.camwa.2011.03.054
- Macías-Díaz J.E. Fractional calculus—Theory and applications Axioms 2022 11 43 10.3390/axioms11020043
- Naifar O. Makhlouf A.B. Fractional Order Systems—Control Theory and Applications Springer International Publishing Berlin/Heidelberg, Germany 2022
- Duffing G.W.C. Erzwungene Schwingungen bei veräNderlicher Eigenfrequenz F. Vieweg Braunschweig, Germany 1918
- Li Z.L. Sun D.G. Han B.H. Sun B. Zhang X. Meng J. Liu F.X. Response of viscoelastic damping system modeled by fractional viscoelastic oscillator Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017 231 3169 3180 10.1177/0954406216642477
- Ortiz A. Yang J. Coccolo M. Seoane J.M. Sanjuán M.A. Fractional damping enhances chaos in the nonlinear Helmholtz oscillator Nonlinear Dyn. 2020 102 2323 2337 10.1007/s11071-020-06070-y
- Agila A. Baleanu D. A study of multi-degree of freedom fractional order damped oscillatory system Upb Sci. Bull. Ser. D 2018 80 52 62
- Narayanan M.D. Narayanan S. Padmanabhan C. Parametric identification of nonlinear systems using multiple trials Nonlinear Dyn. 2007 48 341 360 10.1007/s11071-006-9085-1
- Failla G. Zingales M. Advanced materials modelling via fractional calculus: Challenges and perspectives Philos. Trans. R. Soc. A 2020 378 20200050 10.1098/rsta.2020.0050
- Bahloul M.A. Aboelkassem Y. Belkhatir Z. Laleg-Kirati T.M. Fractional-Order Modeling of Arterial Compliance in Vascular Aging: A Computational Biomechanical Approach for Investigating Cardiovascular Dynamics IEEE Open J. Eng. Med. Biol. 2023 5 650 660 10.1109/OJEMB.2023.3343083
- Li Z. Chen D. Zhu J. Liu Y. Nonlinear dynamics of fractional order Duffing system Chaos, Solitons Fractals 2015 81 111 116 10.1016/j.chaos.2015.09.012
- Khader M.M. Kumar S. An efficient computational method for solving a system of FDEs via fractional finite difference method Appl. Appl. Math. Int. J. (Aam) 2019 14 32
- Das D. Taralova I. Loiseau J.J. Time-delay feedback control of fractional chaotic Rössler oscillator Ifac-Papersonline 2024 58 90 95 10.1016/j.ifacol.2024.07.069
- Diethelm K. Ford N.J. The Analysis of Fractional Differential Equations Lecture notes in mathematics Springer Berlin/Heidelberg, Germany 2010
- Meerschaert M.M. Tadjeran C. Finite difference approximations for fractional advection–dispersion flow equations J. Comput. Appl. Math. 2004 172 65 77 10.1016/j.cam.2004.01.033
- Chang Y. Zhu Y. Li Y. Wang M. Dynamical analysis of a fractional-order nonlinear two-degree-of-freedom vehicle system by incremental harmonic balance method J. Low Freq. Noise, Vib. Act. Control 2024 43 706 728 10.1177/14613484231210484
- Yan Z. Dai H. Wang Q. Atluri S.N. Harmonic Balance Methods: A Review and Recent Developments Comput. Model. Eng. Sci. 2023 137 1419 1459 10.32604/cmes.2023.028198
- Koç E. Koç A. Fractional Fourier Transform in Time Series Prediction IEEE Signal Process. Lett. 2022 29 2542 2546 10.1109/LSP.2022.3228131
- Cui R. Wei Y. Chen Y. Cheng S. Wang Y. An Innovative Parameter Estimation for Fractional-Order Systems in the Presence of Outliers Nonlinear Dyn. 2017 89 453 463 10.1007/s11071-017-3464-7
- Mani A.K. Narayanan M.D. Sen M. Parametric Identification of Fractional-Order Nonlinear Systems Nonlinear Dyn. 2018 93 945 960 10.1007/s11071-018-4238-6
- Metzler R. Klafter J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. 2000 339 1 77 10.1016/S0370-1573(00)00070-3
- Tian W. Zhou H. Deng W. A class of second order difference approximations for solving space fractional diffusion equations Math. Comput. 2015 84 1703 1727 10.1090/S0025-5718-2015-02917-2
- Alqahtani A. Mach T. Reichel L. Solution of ill-posed problems with Chebfun Numer. Algorithms 2023 92 2341 2364 10.1007/s11075-022-01390-z
- Oppenheim A.V. Discrete-Time Signal Processing Pearson Education India Noida, India 1999
- Takens F. Detecting strange attractors in turbulence Dynamical Systems and Turbulence, Warwick, Proceedings of the a Symposium Held at the University of Warwick, Berlin/Heidelberg, Germany, 7 October 2006 Springer Berlin/Heidelberg, Germany 2006 366 381
- Sauer T. Yorke J.A. Casdagli M. Embedology J. Stat. Phys. 1991 65 579 616 10.1007/BF01053745
- Wolf A. Swift J.B. Swinney H.L. Vastano J.A. Determining Lyapunov exponents from a time series Phys. D Nonlinear Phenom. 1985 16 285 317 10.1016/0167-2789(85)90011-9
- Pecora L.M. Carroll T.L. Synchronization in chaotic systems Phys. Rev. Lett. 1990 64 821 10.1103/PhysRevLett.64.821
- Abarbanel H. Analysis of Observed Chaotic Data Springer Science & Business Media Berlin/Heidelberg, Germany 2012
- Parlitz U. Estimating model parameters from time series by autosynchronization Phys. Rev. Lett. 1996 76 1232 1235 10.1103/PhysRevLett.76.1232
- Momtahan S. Saeedi H. Moghaddam M.M. A fractional block pulse operational method for solving a class of fractional partial differential equations J. Fract. Calc. Appl. 2017 8 166 181
- Li L. Wang D. Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations Bit Numer. Math. 2021 62 995 1027 10.1007/s10543-021-00900-0
- Jin B. Fractional Differential Equations Springer International Publishing Cham, Switzerland 2010
- Mirzaee F. Sayevand K. Rezaei S. Samadyar N. Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation Iran. J. Sci. Technol. Trans. A Sci. 2021 45 607 617 10.1007/s40995-020-01036-6
- Zhang C.H. Yu J.W. Wang X. A Fast Second-Order Scheme for Nonlinear Riesz Space-Fractional Diffusion Equations Numer. Algorithms 2023 92 1813 1836 10.1007/s11075-022-01367-y
- Ren H. Ma J. Liu H. A Convolution Quadrature Using Derivatives and Its Application Bit Numer. Math. 2024 64 8 10.1007/s10543-024-01009-w
- Valério D. Sá da Costa J.S. Identifying Fractional Models from Frequency and Time Responses Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and Its Applications Ankara, Turkey 5–7 November 2008
Issue
| Fractal and Fractional, vol. 9, 2025, Albania, https://doi.org/10.3390/fractalfract9090581 |
|