Autors: Sofronova, D. A., Angelova, R. A. Title: Embroidery of Conductive Threads in Textiles Keywords: Abstract: Chapter 12 provides information on the design and application of embroideries in smart textiles. It discusses various methods and technologies for the production of textile-based sensors. Additionally, the use of conductive threads for sewing and embroidering is examined, including an overview of different types of conductive threads and their electrical properties. The chapter highlights the importance of determining the sewing capability of these threads. Furthermore, it presents an experimental investigation of specific conductive threads, focusing on testing their electrical resistance and washability. The results of this investigation are analyzed and discussed. The chapter also delves into the design aspects of using conductive threads in stitches and patterns for e-textiles, considering design requirements and thread consumption. It concludes with an experimental study exploring the capacitance and electrical conductivity of the designed stitches and patterns. Finally, different applications of conductive threads in the development of smart textiles, e-textiles, wearable electronics, medical items, interactive art and fashion, soft robotics, prototyping, and rapid electronics are discussed. References - Aigner, R., Pointner, A., Preindl, T., Parzer, P., & Haller, M. (2020, April). Embroidered resistive pressure sensors: A novel approach for textile interfaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems(pp. 1-13).
- Alonso-Gonzalez, L., Ver-Hoeye, S., Fernandez-Garcia, M., Vazquez-Antuna, C., & Andres, F. L. H. (2018). From threads to smart textile: Parametric characterization and electromagnetic analysis of woven structures. IEEE Access, 7, 1486-1501.
- Alshabouna, F., Lee, H. S., Barandun, G., Tan, E., £otur, Y., Asfour, T., … Guder, F. (2022). PEDOT: PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Materials Today, 59, 56-67.
- An, X., & Stylios, G. K. (2018). A hybrid textile electrode for electrocardiogram (ECG) mea-surement and motion tracking. Materials, 11(10), 1887.
- Atalay, O., Kalaoglu, F., & Kursun Bahadir, S. (2019). Development of textile-based trans-mission lines using conductive yarns and ultrasonic welding technology for e-textile applications. Journal of Engineered Fibers and Fabrics, 14. https://doi.org/10.1177 /1558925019856603.
- Baima, M., & Andrew, T. L. (2018). Fluoropolymer-wrapped conductive threads for textile touch sensors operating via the triboelectric effect. Fibers, 6(2), 41.
- Basu, A., Jain, S., & Khoiwal, V. S. (2019). Development of smart textiles for medical care. In Functional textiles and clothing (pp. 101-106). Springer Singapore.
- Borah, P. P., & Sorathia, K. B. (2022). Fabrication of Namya: A bend and touch-sensitive flexible smartphone-sized prototype. Human Behavior and Emerging Technologies, 2022, Article 1234567.
- Bravo, V. P., & Munoz, J. A. (2022). Wearables and their applications for the rehabilitation of elderly people. Medical & Biological Engineering & Computing, 60(5), 1239-1252.
- Carneiro, M. R., Rosa, L. P., De Almeida, A. T., & Tavakoli, M. (2022, April). Tailor-made smart glove for robot teleoperation, using printed stretchable sensors. In 2022 IEEE5th international conference on soft robotics (RoboSoft) (pp. 722-728). IEEE.
- Catrysse, M., Puers, R., Hertleer, C., Van Langenhove, L., Van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 114(2-3), 302-311.
- Chen, L., Su, Z., He, X., Chen, X., & Dong, L. (2022). The application of robotics and artificial intelligence in embroidery: Challenges and benefits. Assembly Automation, (ahead-of-print).
- Cho, G., Lee, S., & Cho, J. (2009). Review and reappraisal of smart clothing. International Journal of Human-Computer Interaction, 25(6), 582-617.
- Choi, H. W., Shin, D. W., Yang, J., Lee, S., Figueiredo, C., Sinopoli, S., … Kim, J. M. (2022). Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nature Communications, 13(1), 814.
- Dong, K., Deng, J., Ding, W., Wang, A. C., Wang, P., Cheng, C., … Wang, Z. L. (2018). Versatile core-sheath yarn for sustainable biomechanical energy harvesting and realtime human-interactive sensing. Advanced Energy Materials, 8(23), 1801114.
- Dong, K., Wang, Y. C., Deng, J., Dai, Y., Zhang, S. L., Zou, H., … Wang, Z. L. (2017). A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano, 11(9), 9490-9499.
- Etana, B. B., Malengier, B., Kwa, T., Krishnamoorthy, J., & Langenhove, L. V. (2023). Evaluation of novel embroidered textile-electrodes made from hybrid polyamide conductive threads for surface EMG sensing. Sensors, 23(9), 4397.
- Gandhi, D., Gadodia, D., Kadam, S., & Narula, H. (2014). E-textiles technology. International Journal of Engineering Trends and Technology, 16, 373-376.
- Garda Nunez, C., Manjakkal, L., & Dahiya, R. (2019). Energy autonomous electronic skin. NPJ Flexible Electronics, 3(1), 1.
- Ghahremani Honarvar, M., & Latifi, M. (2017). Overview of wearable electronics and smart textiles. The Journal of the Textile Institute, 108(4), 631-652.
- Gong alves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable e-textile tech-nologies: A review on sensors, actuators and control elements. Inventions, 3(1), 14.
- Hasanpour, S., Karperien, L., Walsh, T., Jahanshahi, M., Hadisi, Z., Neale, K. J., … Akbari, M. (2022). A hybrid thread-based temperature and humidity sensor for continuous wound monitoring. Sensors and Actuators B: Chemical, 370, 132414.
- Heo, J. S., Eom, J., Kim, Y. H., & Park, S. K. (2018). Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small, 14(3), 1703034.
- Hill, C., Schneider, M., Eisenberg, A., & Gross, M. D. (2021, February). The threadboard: Designing an e-textile rapid prototyping board. In Proceedings of the fifteenth international conference on tangible, embedded, and embodied interaction (pp. 1-7). IEEE.
- Hurban, H. (2020). “The dervish sound dress”-A garment using sensors that emit sound and haptic feedback. Music in Society the Collection of Papers, 11, 621-652.
- Husain, M. D., Atalay, O., & Kennon, R. (2013). Effect of strain and humidity on the perfor-mance of temperature sensing fabric. International Journal of Textile Science, 2(4), 105-112.
- Ismar, E., Kur§un Bahadir, S,. Kalaoglu, F., & Koncar, V. (2020). Futuristic clothes: Electronic textiles and wearable technologies. Global Challenges, 4(7), 1900092.
- Jegan, R., & Nimi, W. S. (2024). On the development of low power wearable devices for assessment of physiological vital parameters: A systematic review. Journal of Public Health, 32(7), 1093-1108.
- Jeong, E., Lee, J., & Kim, D. (2011, October). Finger-gesture recognition glove using velostat (ICCAS 2011). In 2011 11th international conference on control, automation and systems (pp. 206-210). IEEE.
- Ji, D., Guo, X., Fu, W., Ding, Z., Wang, C., Zhang, Q., … Qin, X. (2022). The marriage of bio-chemistry and nanotechnology for non-invasive real-time health monitoring. Materials Science and Engineering: R: Reports, 149, 100681.
- Jia, J., Xu, C., Pan, S., Xia, S., Wei, P., Noh, H. Y., … Jiang, X. (2018). Conductive thread-based textile sensor for continuous perspiration level monitoring. Sensors, 18(11), 3775.
- Jo, J., Kong, D., & Park, H. (2021, September). BLInG: Beads-laden interactive garment. In 2021 International symposium on wearable computers (pp. 189-193). IEEE.
- Kohler, A. R. (2013). Challenges for eco-design of emerging technologies: The case of electronic textiles. Materials & Design, 51, 51-60.
- Koo, S., & Chae, Y. (2022). Wearable Technology in Fashion. In Leading edge technologies in fashion innovation: Product design and development process from materials to the end products to consumers (pp. 35-57). Springer International Publishing.
- Krehel, M., Wolf, M., Boesel, L. F., Rossi, R. M., Bona, G. L., & Scherer, L. J. (2014). Development of a luminous textile for reflective pulse oximetry measurements. Biomedical Optics Express, 5(8), 2537-2547.
- Kuzubasoglu, B. A., & Bahadir, S. K. (2020). Flexible temperature sensors: A review. Sensors and Actuators A: Physical, 315, 112282.
- Lee, E., & Kim, Y. (2021). Development of mass customization tech-pocket smart fashion using computer embroidery machine: Website development reflecting the characteristics of generation MZ. Archives of Design Research, 34(3), 41-59.
- Liang, A., Stewart, R., & Bryan-Kinns, N. (2019). Design of textile knitted stretch sensors for dance movement sensing. Multidisciplinary Digital Publishing Institute Proceedings, 32(1), 14.
- Lin, F., Wang, A., Zhuang, Y., Tomita, M. R., & Xu, W. (2016). Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics, 12(6), 2281-2291.
- Lin, R., Kim, H. J., Achavananthadith, S., Xiong, Z., Lee, J. K., Kong, Y. L., & Ho, J. S. (2022). Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 13(1), 2190.
- Lugoda, P., Costa, J. C., Oliveira, C., Garcia-Garcia, L. A., Wickramasinghe, S. D., Pouryazdan, A., … Munzenrieder, N. (2019). Flexible temperature sensor integration into e-textiles using different industrial yarn fabrication processes. Sensors, 20(1), 73.
- Lund, A., Tian, Y., Darabi, S., & Muller, C. (2020). A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 480, 228836.
- Marshall, C., Kelley, J., & Turnbull, C. (2019, October). Improv performance with wi-fi enabled costume lights. In 2019 IEEE 10th annual ubiquitous computing, electronics & mobile communication conference (UEMCON) (pp. 0163-0168). IEEE.
- McCann, J. (2023). Collaborative design principles for smart clothing. In Smart clothes and wearable technology (pp. 283-325). Woodhead Publishing.
- Mlakar, S., Alida Haberfellner, M., Jetter, H. C., & Haller, M. (2021, June). Exploring affor-dances of surface gestures on textile user interfaces. In Designing interactive systems conference 2021 (pp. 1159-1170). IEEE.
- Natarajan, M., & Govindarajan, G. T. (2014). Design and development of textile electrodes for EEG measurement using copper plated polyester fabrics. Journal of Textile and Apparel, Technology and Management, 8(4), 1-8.
- Orth, M. (2002). Defining flexibility and sewability in conductive yarns. MRS Online Proceedings Library, 736(1), 14.
- Pacelli, M., Loriga, G., Taccini, N., & Paradiso, R. (2006, September). Sensing fabrics for monitoring physiological and biomechanical variables: E-textile solutions. In 2006 3rd IEEE/EMBS international summer school on medical devices and biosensors (pp. 1-4). IEEE.
- Park, J., Park, S., Ahn, S., Cho, Y., Park, J. J., & Shin, H. (2020). Wearable strain sensor using conductive yarn sewed on clothing for human respiratory monitoring. IEEE Sensors Journal, 20(21), 12628-12636.
- Raj, G. K., Singh, E., Hani, U., Ramesh, K. V. R. N. S., Talath, S., Garg, A., … Osmani, R. A. M. (2023). Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. Journal of Controlled Release, 355, 709-729.
- Ramlow, H., Andrade, K. L., & Immich, A. P. S. (2021). Smart textiles: An overview of recent progress on chromic textiles. The Journal of the Textile Institute, 112(1), 152-171.
- Roberts, P., Zadan, M., & Majidi, C. (2021). Soft tactile sensing skins for robotics. Current Robotics Reports, 2, 343-354.
- Root, W., Bechtold, T., & Pham, T. (2020). Textile-integrated thermocouples for temperature measurement. Materials, 13(3), 626.
- Rosa-Ortiz, S. M. (2021). Copper electrodeposition assisted by hydrogen evolution for wearable electronics: Interconnections and fiber metallization (Doctoral dissertation), University of South Florida.
- Shen, S., Xiao, X., & Chen, J. (2021). Wearable triboelectric nanogenerators for heart rate monitoring. Chemical Communications, 57(48), 5871-5879.
- Shuvo, I. I., & Dolez, P. I. (2023). Progress in physiological textile sensors for biomedical applications. In Functional and technical textiles (pp. 333-372). Woodhead Publishing.
- Simegnaw, A. A., Malengier, B., Rotich, G., Tadesse, M. G., & Van Langenhove, L. (2021). Review on the integration of microelectronics for E-textile. Materials, 14(17), 5113.
- Singha, K., Kumar, J., & Pandit, P. (2019). Recent advancements in wearable & smart textiles: An overview. Materials Today: Proceedings, 16, 1518-1523.
- Song, G., & Wang, F. (2019). Firefighters’ protective clothing and equipment. In Firefighter’s clothing and equipment: Performance, protection, and comfort (pp. 26-60). CRC Press.
- Soukup, R., Hamacek, A., Mracek, L., & Reboun, J. (2014, May). Textile based temperature and humidity sensor elements for healthcare applications. In Proceedings of the 2014 37th international spring seminar on electronics technology (pp. 407-411). IEEE.
- Stewart, R. (2019). Cords and chords: Exploring the role of e-textiles in computational audio. Frontiers in ICT, 6, 2.
- Subashini, J. M., Padmaja, P. P., Mishra, M. K., Palanisamy, R., & Veluswamy, P. (2022, December). Smart textile materials for monitoring ECG signals. In 2022 IEEE interna-tional conference on emerging electronics (ICEE) (pp. 1-6). IEEE.
- Tahir, H. R., Malengier, B., Tseghai, G. B., & Van Langenhove, L. (2022). Sensing of body movement by stretchable triboelectric embroidery aimed at healthcare and sports activity monitoring. Engineering Proceedings, 15(1), 4.
- Tan, J., Bai, Z., Ge, L., Shao, L., & Chen, A. (2019). Design and fabrication of touch-sensitive polymeric optical fibre (POF) fabric. The Journal of the Textile Institute, 110(11), 1529-1537.
- Tao, X., Koncar, V., Huang, T. H., Shen, C. L., Ko, Y. C., & Jou, G. T. (2017). How to make reliable, washable, and wearable textronic devices. Sensors, 17(4), 673.
- Tseghai, G. B., Malengier, B., Fante, K. A., Nigusse, A. B., & Van Langenhove, L. (2020). Integration of conductive materials with textile structures, an overview. Sensors, 20(23), 6910.
- Tyler, D., Wood, J., Sabir, T., McDonnell, C., Sayem, A. S. M., & Whittaker, N. (2019). Wearable electronic textiles. Textile Progress, 51(4), 299-384.
- Van Langenhove, L., & Hertleer, C. (2004). Smart clothing: A new life. International Journal of Clothing Science and Technology, 16(1/2), 63-72.
- Wang, Z., Huang, Y., Sun, J., Huang, Y., Hu, H., Jiang, R., … Zhi, C. (2016). Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Applied Materials & Interfaces, 8(37), 24837-24843.
- Wu, T., Fukuhara, S., Gillian, N., Sundara-Rajan, K., & Poupyrev, I. (2020, October). ZebraSense: A double-sided textile touch sensor for smart clothing. In Proceedings of the 33rd annual ACM symposium on user interface software and technology (pp. 662-674). IEEE.
- Xie, Z., Avila, R., Huang, Y., & Rogers, J. A. (2020). Flexible and stretchable antennas for biointegrated electronics. Advanced Materials, 32(15), 1902767.
- Xiong, J., Chen, J., & Lee, P. S. (2021). Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Advanced Materials, 33(19), 2002640.
- Xu, P. J., Zhang, H., & Tao, X. M. (2008). Textile-structured electrodes for electrocardiogram. Textile Progress, 40(4), 183-213.
- Zysset, C., Kinkeldei, T., Cherenack, K., & Troster, G. (2010). Woven electronic textiles: An enabling technology for health-care monitoring in clothing. In Proceedings of the 5th international workshop on ubiquitous health and wellness (pp. 1-4). IEEE.
Issue
| Sewing Machines and Processes, pp. 228-259, 2025, United States, https://doi.org/10.1201/9781003293071-12 |
|