Autors: Sandov, O. L., Naydenova, I. I., Damyanov, I. S., Saliev, D. N., Stoyneva, E. H., Mladenov, G. D. Title: Particulate size distribution and carbon conversion during oxidation of biomass from livestock farming Keywords: biomass thermal conversion, oxidation of biomass from livestock farming, PM from cow manure utilizationAbstract: Agriculture greatly contributes to the annual emissions atmospheric pollutants. Cow manure is a lignocellulosic material, which higher heating value (HHV) typically varies between 15 and 20 MJ/kg on dry basis. As solid biofuels it shows relatively low coke content, at the expense of the relative mass fraction of moisture, ash and volatile matter. Although animal manure utilization has been widely studied during the last decades it has not gained significant attention in Bulgaria, due to the availability of other fossil and renewable resources. However, considering the pollution control and the circular economy perspectives the potential utilization of this type of solid residue matter deserves extensive research. Preliminary in-house studies on solid biomass residue confirmed the direct relation between the high volatiles content and the emissions of gaseous and particulate matter (PM) in the exhaust. The present work aimed to study the rate of carbon conversion and the size segregated PM in the flue gases, obtained during direct oxidation of cow manure. The experiment was carried out in a tubular flow furnace, capable for providing well controlled operation conditions, such as: Atmospheric pressure, temperatures of 950 °C, partial pressure of the oxygen (O2) in the air supply flow of 21 vol. % at an inlet air flow rate of 10 l/min. The temperature dependence of the carbon conversion and the gaseous pollutants was obtained along with the size distribution curve of the PM, considering particulates of size from 0.016 to 10 microns. As expected, the fractions of PM with aerodynamic diameter equal to or smaller than 1 micron were the dominant one. References - Tchapda A.H. Pisupati S.V. Energies 2014 7 1098 1148. https://doi.org/10.3390/en7031098
- Paris Agreement, United Nations 2015. ( https://unfccc.int/sites/default/files/english_paris_agreement.pdf ), accessed: 20.05.2023
- Schröder T. Lenz V. von Sonntag J. Ulbricht T. Khalsa J. Heidecke P. Stahl E. Schön C. Hartmann H. Kuptz D. Woltersdorf N. Kunde R. Adeili M. Volz F. 08 Series of the funding programme â zBiomass energy use", DBFZ 2018, ISSN (online): 2364-897X. ( https://www.energetische-biomassenutzung.de/sites/default/files/2024-03/SR8_Feinstaub_en_2018_web.pdf ), accessed: 25.06.2025
- Zhang Y. Yao S. Hu J. Xia J. Xie T. Zhang Z. Li H. Front. Agr. Sci. Eng 2023 10 3 458 467. https://doi.org/10.15302/J-FASE-2023500
- Akyürek Z. Sustainability 2019 11 2280. https://doi.org/10.3390/su11082280
- Zhou S. Han L. Huang G. Yang Z. Peng J. Journal of Analytical and Applied Pyrolysis 2018 134 343 350. https://doi.org/10.1016/j.jaap.2018.06.024
- Katsaros G. Pandey D. S. Horvat A. Almansa G. A. Fryda L. E. Leahy J. J. Tassou S. A. Waste Management 2019 100 336 345. https://doi.org/10.1016/j.wasman.2019.09.014
- Zhu G. Huang J. Wan Z. Ling H. Xu Q. Processes 2022 10 7 1257. https://doi.org/10.3390/pr10071257
- Jeswani H. K. Whiting A. Martin A. Azapagic A. Waste Management 2019 95 182 191. https://doi.org/10.1016/j.wasman.2019.05.053
- Adanez-Rubio I. Ferreira R. Rio T. Alzueta M.U. Costa M. Fuel 2020 281 118738. https://doi.org/10.1016/j.fuel.2020.118738
- Naydenova I. Sandov O. Wesenauer F. Laminger T. Winter F. Fuel 2020 278 117958. https://doi.org/10.1016/j.fuel.2020.117958
- Pereira S. Costa M. Renewable Sustainable Energy Rev 2017 74 117 1180. http://dx.doi.org/10.1016.j.rser.2017.03.006
- Todorov G. Kralov I. Koprev I. Vasilev H. Naydenova I. Energies 2024 17 929. https://doi.org/10.3390/en17040929
- Kandpal J. Maheshwari R. C. Kandpal T. C. Energy conversion and management 1995 36 11 1073 1079
- Sweeten J.M. Heflin K. Auvermann B.W. Annamalai K. McCollum F.T. Transactions of the ASABE 2013 56 1 279 294. https://agrilife.org/envsys/files/2016/03/Sweeten-et-Al.-2013.pdf
- Naydenova I.I. Sandov O. L. Petrova T. S. Communication and Energy Systems and Technologies (ICEST), Nis, Serbia 2023 183 186 10.1109/ICEST58410.2023.10187327
- Glushkov D.O. Nyashina G.S. Anand R. Strizhak P.A. Process Safety and Environmental Protection 2021 156 43 56. https://doi.org/10.1016/j.psep.2021.09.039
- Khana A.A. Jonga W. de Jansensb P.J. Spliethoff H. Fuel Processing Technology 2009 90 21 50 10.1016/j.fuproc.2008.07.012
- Obernberger I. Brunner T. Baernthaler G. Biomass Bioenergy 2006 30 973 82. https://doi.org/10.1016/j.biombioe.2006.06.011
- Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. Fuel 89 2010 913 33. https://doi.org/10.1016/j.fuel
- Damyanov I. Saliev D. Dimitrov K. Hristov V. 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria 2024 1 5 10.1109/EEAE60309.2024.10600554
- Gao X. Wu H. Energy Fuels 25 9 2011 4172 81. https://doi.org/10.1021/ef2008216
- Chen H. Tang X. Liang C. Wu X. J. Environ Manage 2018 209 245 253. https://doi.org/10.1016/j.jenvman.2017.12.072
- Prapinagsorn W. Sittijunda S. Reungsang A. Energies 2017 10 1654. https://doi.org/10.3390/en10101654
- Lee S. Ryu C.H. Back Y.C. Lee S.D. Kim H. Animals (Basel) 2023 13 23 3622 10.3390/ani13233622
- European Comission Energy, climate change, environment. Circular economy action plan, (https://environment.ec.europa.eu/strategy/circular-economy-Action-plan_en), accessed: 10.6.2024
Issue
| IOP Conference Series: Earth and Environmental Science, vol. 1532, 2025, Albania, https://doi.org/10.1088/1755-1315/1532/1/012011 |
|