Autors: Kotlarski G., Stoeva D., Dechev D., Ivanov N., Ormanova M., Mateev, V. M., Marinova, I. I., Valkov S. Title: Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods Keywords: applications, electrical engineering, electronics, physical vapor deposition, semiconductors, thin filmsAbstract: During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. References - Zhou Q. Chua M. Ong P. Lee J. Chin K. Wang S. Kai D. Ji R. Kong J. Dong Z. et al. Recent advances in nanotechnology-based functional coatings for the build environment Mater. Today Adv. 2022 15 100270 10.1016/j.mtadv.2022.100270
- Ramsden J. Applied Nanotechnology: The Conversion of Research Results to Products William Andrew Oxford, UK 2018
- Saini A. Singh G. Mehta S. Singh H. Dixit S. A review on mechanical behavior of electrodeposited Ni-composite coatings Int. J. Interact. Des. Manuf. 2023 17 2247 2258 10.1007/s12008-022-00969-z
- Hamdiah I. Solehudin A. Hamdani A. Hasanah L. Khairurrijal K. Kurniawan T. Mamat R. Maryanti R. Nandiyanto A. Hammouti B. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCL electrolyte solutions and its impact to the mechanical properties Alex. Eng. J. 2021 60 2235 2243 10.1016/j.aej.2020.12.027
- Zhang B. Ghassemi M. Zhang Y. Insulation materials and systems for power electronics modules: A review identifying challenges and future research needs IEEE Trans. Dielectr. Electr. Insul. 2021 28 290 302 10.1109/TDEI.2020.009041
- Borghei M. Ghassemi M. Insulation materials and systems for more- and all-electric aircraft: A review identifying challenges and future research needs IEEE Trans. Transp. Electrif. 2021 7 1930 1953 10.1109/TTE.2021.3050269
- Habib A. Hasan M. Issa G. Singh D. Islam S. Ghazal T. Lithium-ion battery management for electric vehicles: Constraints, challenges, and recommendations Batteries 2023 9 152 10.3390/batteries9030152
- Islam M. Wolff M. Yassine M. Schonweger G. Christian B. Kohlstedt H. Ambacher O. Lofink F. Kienle L. Fichtner S. On the exceptional temperature stability of ferroelectric Al1-xScxN thin films App. Phys. Lett. 2021 118 232905 10.1063/5.0053649
- Guller O. Varol T. Alver U. Biyik S. The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating Adv. Powder Technol. 2021 32 2873 2890 10.1016/j.apt.2021.05.053
- Dongquoc V. Seo D. Anh C. Lee J. Park J. Kim E. Controlled surface morphology and electrical properties of sputtered titanium nitride thin film for metal-insulator-metal structures Appl. Sci. 2022 12 10415 10.3390/app122010415
- Grigoriev S. Dosko S. Vereschaka A. Zelenkov V. Sotova C. Diagnostic techniques for electrical discharge plasma used in PVD coating processes Coatings 2023 13 147 10.3390/coatings13010147
- Grechanyuk I. Konoval P. Grechanyuk G. Badliuk G. Myroniuk D. Properties of Cu-Mo materials produced by physical vapor deposition for electrical contacts Powder Metall. Metal Ceram. 2021 60 183 190 10.1007/s11106-021-00226-0
- Kelly P. Arnell R. Magnetron sputtering: A review of recent developments and applications Vacuum 2000 56 159 172 10.1016/S0042-207X(99)00189-X
- Efeoglu I. Arnell R. Teer D. The mechanical and tribological properties of titanium aluminium nitride coatings formed in a four magnetron closed-field sputtering system Surf. Coat. Technol. 1993 57 117 121 10.1016/0257-8972(93)90027-L
- Peron M. Cogo S. Bjelland M. Afif A. Dadlani A. Greggio E. Berto F. Torgersen J. On the evaluation of ALD TiO2, ZrO2and HfO2coatings on corrosion and cytotoxicity performances J. Magnes. Alloys 2021 9 1806 1819 10.1016/j.jma.2021.03.010
- Randhawa S. A state-of-the-art review on advanced ceramic materials: Fabrication, characteristics, applications, and wettability Pigment Resin Technol. 2024 53 768 785 10.1108/PRT-12-2022-0144
- Manohar A. Bretschger O. Nealson K. Mansfeld F. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell Bioelectrochemistry 2008 72 149 154 10.1016/j.bioelechem.2008.01.004 18294928
- Pejcic B. Marco R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization Electrochim. Acta 2006 51 6217 6229 10.1016/j.electacta.2006.04.025
- Chang B. Park S. Electrochemical Impedance Spectroscopy Annu. Rev. Anal. Chem. 2010 3 207 229 10.1146/annurev.anchem.012809.102211 20636040
- Arnell R. Kelly P. Recent advances in magnetron sputtering Surf. Coat. Technol. 1999 112 170 176 10.1016/S0257-8972(98)00749-X
- Awan T. Afsheen S. Kausar S. Physical vapor deposition techniques Thin Film Deposition Techniques Springer Singapore 2025
- Rossnagel S. Thin filim deposition with physical vapor deposition and related technologies J. Vac. Sci. Technol. A 2003 21 S74 S87 10.1116/1.1600450
- Gates S. Surface chemistry in the chemical vapor deposition of electronic materials Chem. Rev. 1996 4 1519 1532 10.1021/cr950233m 11848801
- Liang X. King D. Weimer A. Ceramic ultra-thin coatings using atomic layer deposition Ceramic Nanocomposites Woodhead Publishing Sawston, UK 2013
- Vorobyova M. Biffoli F. Giurlani W. Martinuzzi M. Linser M. Caneschi A. Innocenti M. PVD for Decorative Applications: A Review Materials 2023 16 4919 10.3390/ma16144919 37512195
- Qaid S. Ghaithan H. Al-Asbahi B. Aldwayyan A. Single-source thermal evaporation growth and the tuning surface passivation layer thickness effect in enhanced amplified spontaneous emission properties of CsPb(Br0.5Cl0.5)3Perovskite Films Polymers 2020 12 2953 10.3390/polym12122953 33322038
- Elanjeitsenni V. Vadivu K. Prasanth B. A review on thin films, conducting polymers as sensor devices Mater. Res. Express 2022 9 022001 10.1088/2053-1591/ac4aa1
- Silva N. Goncalves L. Carvalho H. Deposition of conductive materials on textile and polymeric flexible substrates J. Mater. Sci. Mater. Electron. 2013 24 635 643
- Fotovvati B. Namdari N. Dehghanghadikolaei A. On coating techniques for surface protection: A review J. Manuf. Mater. Process. 2019 3 28 10.3390/jmmp3010028
- Kotlarski G. Valkov S. Andreeva A. Mateev V. Marinova I. Petrov P. Electrical contact resistance of tungsten coatings deposited on Cu and Al conductors J. Phys. Conf. Ser. 2021 1859 012063 10.1088/1742-6596/1859/1/012063
- Kuanr S. Vinothkumar G. Babu K. Substrate temperature dependent structural orientation of EBPVD deposited NiO films and its influence on optical, electrical property Mater. Sci. Semicond. Process. 2018 75 26 30 10.1016/j.mssp.2017.11.013
- Ogugua S. Ntwaeaborwa O. Swart H. Latest development on pulsed laser deposited thin films for advanced luminescence applications Coatings 2020 10 1078 10.3390/coatings10111078
- Karnati P. Haque A. Taufique N. Ghosh K. A Systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique Nanomaterials 2018 8 62 10.3390/nano8020062 29370084
- Osiac M. Cioatera N. Jigau M. Structural, morphological, and optical properties of iron doped WO3thin film prepared by pulsed laser deposition Coatings 2020 10 412 10.3390/coatings10040412
- Zhang Y. Russo E. Mao S. Femtosecond laser assisted growth of ZnO nanowires Appl. Phys. Lett. 2005 87 133115 10.1063/1.2061858
- Duta L. Ristoscu C. Stan C. Husanu M. Besleaga C. Chifiriuc M. Lazar V. Bleotu C. Miculescu F. Mihailescu N. et al. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assited Pulsed Laser Evaporation for medical applications Appl. Surf. Sci. 2018 441 871 883 10.1016/j.apsusc.2018.02.047
- Bonis A. Teghil R. Ultra-short pulsed laser deposition of oxides, borides and carbides of transition elements Coatings 2020 10 501 10.3390/coatings10050501
- Lux H. Edling M. Lucci M. Kitzmann J. Villringer C. Siemroth P. De Matteis F. Schrader S. The role of substrate temperature and magnetic filtering for DLC by cathodic arc evaporation Coatings 2019 9 345 10.3390/coatings9050345
- Vyskocil J. Musil J. Cathodic arc evaporation in thin film technology J. Vac. Sci. Technol. A 1992 10 1740 1748 10.1116/1.577741
- Kuprin A. Gilewicz A. Kuznetsova T. Lapitskaya V. Tolmachova G. Warcholinski B. Aizikovich S. Sadyrin E. Structure and properties of ZrON coatings synthesized by cathodic arc evaporation Materials 2021 14 1483 10.3390/ma14061483 33803527
- Harris S. Doyle E. Wong Y. Munroe P. Cairney J. Long J. Reducing the macroparticle content of cathode arc evaporation TiN coatings Surf. Coat. Technol. 2004 183 283 294 10.1016/j.surfcoat.2003.08.086
- Gilewicz T. Warcholinski B. Murzynski D. The properties of molybdenum nitride coatings obtained by cathodic arc evaporation Surf. Coat. Technol. 2013 236 149 158 10.1016/j.surfcoat.2013.09.005
- Olbrich W. Fessmann J. Kampschulte G. Ebberink J. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias Surf. Coat. Technol. 1991 49 258 262 10.1016/0257-8972(91)90065-5
- Mwema F. Akinlabi E. Oladijo O. Majumdar J. Effect of varying low substrate temperature on sputtered aluminum films Mater. Res. Express 2019 6 056404 10.1088/2053-1591/ab014a
- Rabadzhiyska S. Dechev D. Ivanov N. Ivanova T. Strijkova V. Katrova V. Rupetsov V. Dimcheva N. Valkov S. Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications Coatings 2024 14 1434 10.3390/coatings14111434
- Qin X. Sui C. Di L. Influence of substrate temperature on the morphology and structure of bismuth thin films deposited by magnetron sputtering Vacuum 2019 166 316 322 10.1016/j.vacuum.2019.05.026
- Dorri M. Thornberg J. Hellgren N. Palisaitis J. Petruhins A. Klimashin F. Hultman L. Petrov I. Persson P. Rosen J. Synthesis and characterization of CrB2thin films grown by DC magnetron sputtering Scr. Mater. 2021 200 113915 10.1016/j.scriptamat.2021.113915
- Koshy A. Sudha A. Yadav S. Swaminathan P. Effect of substrate temperature on the optical properties of DC magnetron sputtered copper oxide thin films Phys. B Condens. Matter 2023 650 414452 10.1016/j.physb.2022.414452
- Valkov S. Parshorov S. Andreeva A. Bezdushnyi R. Nikolova M. Dechev D. Ivanov N. Petrov P. Influence of electron beam treatment of Co-Cr alloy on the growing mechanism, surface topography, and mechanical properties of deposited TiN/TiO2coatings Coatings 2019 9 513 10.3390/coatings9080513
- Vega-Moron R. Castro G. Melo-Maximo D. Mendez-Mendez J. Melo-Maximo L. Oseguera-Pena J. Meneses-Amador A. Adhesion and mechanical properties of Ti films deposited by DC magnetron sputtering Surf. Coat. Technol. 2018 349 1137 1147 10.1016/j.surfcoat.2018.05.078
- Iqbal A. Mohd-Yasin F. Reactive sputtering of Aluminium nitride (002) thin films for piezoelectric applications: A review Sensors 2018 18 1797 10.3390/s18061797 29865261
- Ren B. Yan S. Zhao R. Liu Z. Structure and properties of (AlCrMoNiTi)Nxand (AlCrMoZrTi)Nxfilms by reactive RF sputtering Surf. Coat. Technol. 2013 235 764 772 10.1016/j.surfcoat.2013.08.064
- Baba S. Kinbara A. Kajiwara T. Watanabe K. Internal stress and adhesion of r.f. sputtered MgO films on glass substrates Thin Solid Films 1988 164 169 174 10.1016/0040-6090(88)90129-0
- Yizhe W. Zha-ma T. Zhenming Y. Hui S. Jianhong G. Jun G. Research on adhesion strength and optical properties of SiC films obtained via RF magnetron sputtering Chin. J. Phys. 2020 64 79 86 10.1016/j.cjph.2020.01.006
- Vossen J. Control of film properties by rf-sputtering techniques J. Vac. Sci. Technol. 1971 8 S12 S30 10.1116/1.1316386
- Maurya D. Sardarinejad A. Alameh K. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications—An overview Coatings 2014 4 756 771 10.3390/coatings4040756
- Gudmundsson J. Physics and technology of magnetron sputtering discharges Plasma Sources Sci. Technol. 2020 29 113001 10.1088/1361-6595/abb7bd
- Kouznetsov V. Macak K. Schneider J. Helmersson U. Petrov I. A novel pulsed magnetron sputter technique utilizing very high target power densities Surf. Coat. Technol. 1999 122 290 10.1016/S0257-8972(99)00292-3
- Gudmundsson J. Brenning N. Lundin D. Helmersson U. High power impulse magnetron sputtering discharge J. Vac. Sci. Technol. A 2012 30 030801 10.1116/1.3691832
- Lundin D. Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering J. Mater. Res. 2012 27 780 792 10.1557/jmr.2012.8
- Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS) J. Appl. Phys. 2017 121 171101 10.1063/1.4978350
- Breilmann W. Maxzl C. Benedikt J. Keudell A. Dynamic of the growth flux at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of titanium J. Phys. D Appl. Phys. 2013 46 485204 10.1088/0022-3727/46/48/485204
- Greczynski G. Lu J. Jensen J. Bolz S. Kolker W. Schiffers C. Lemmer O. Greene J. Hultman L. A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering Surf. Coat. Technol. 2014 257 15 25 10.1016/j.surfcoat.2014.01.055
- Sittinger V. Lenck O. Vergohl M. Szyszka B. Brauer G. Applications of HIPIMS metal oxides Thin Solid Films 2013 548 18 26 10.1016/j.tsf.2013.08.087
- Losquai S. Baloukas B. Zabeida O. Klemberg-Sapieha J. Martinu L. HiPIMS-deposited thermochromic VO2filims on polymeric substrates Sol. Energy Mat. Sol. Cells 2016 155 60 69 10.1016/j.solmat.2016.04.048
- Devan R. Patil R. Lin J. Ma Y. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications Adv. Funct. Mater. 2012 22 3326 3370 10.1002/adfm.201201008
- Ashik U.P.M. Kudo S. Hayashi J. An overview of metal oxide nanostructures Micro and Nano Technologies, Synthesis of Inorganic Nanomaterials 1st ed. Bhagyaraj S. Olumafemi O. Kalarikkal N. Thomas S. Woodhead Publishing Sawston, UK 2018 19 57
- Baptista A. Silva F. Porteiro J. Miguesz J. Pinto G. Fernandes L. One the physical vapour deposition (PVD): Evolution of magnetron sputtering processes for industrial applications Procedia Manuf. 2018 17 746 757 10.1016/j.promfg.2018.10.125
- Ramezani M. Mohd Ripin Z. Pasang T. Jiang C.-P. Surface engineering of metals: Techniques, characterizations and applications Metals 2023 13 1299 10.3390/met13071299
- Petti L. Munzenrieder N. Vogt C. Faber H. Buthe L. Cantarella G. Bottacchi F. Anthopoulos T. Troster G. Metal oxide semiconductor thin-film transistors for flexible electronics Appl. Phys. Rev. 2016 3 021303 10.1063/1.4953034
- Al-harbi L. Alsulami Q. Farea M. Rajesh A. Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices J. Mol. Struct. 2023 1272 134244 10.1016/j.molstruc.2022.134244
- Cao Y. He Y. Gang H. Wu B. Yan L. Wei D. Wang H. Stability study of transition metal oxide electrode materials J. Power Sources 2023 560 232710 10.1016/j.jpowsour.2023.232710
- Dey A. Semiconductor metal oxide gas sensors: A review Mater. Sci. Eng. B 2018 229 206 217 10.1016/j.mseb.2017.12.036
- Fazio E. Spadaro S. Corsaro C. Neri G. Leonardi S. Neri F. Lavanya N. Sekar C. Donato N. Neri G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors Sensors 2021 21 2494 10.3390/s21072494 33916680
- Saruhan B. Fomekong R. Nahirniak S. Review: Influences of semiconductor metal oxide properties on gas sensing characteristics Frontiers 2021 2 657931 10.3389/fsens.2021.657931
- Kumar K. Atchuta S. Prasad M. Barshilia H. Review on selective absorber coatings: A catalyst for enhanced solar energy conversion efficiency Sol. Energy Mater. Sol. Cells 2024 277 113080 10.1016/j.solmat.2024.113080
- Agravat D. Patel S. Alsalman O. Nanostructured metal-oxide materials for solar energy absorption and conversion for industrial heater applications Int. J. Therm. Sci. 2024 200 108951 10.1016/j.ijthermalsci.2024.108951
- Jain N. Kumar D. Bhardwaj K. Sharma R. Holovsky J. Mishra M. Mishra Y. Sharma S. Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors Mater. Sci. Eng. R Rep. 2024 160 100826 10.1016/j.mser.2024.100826
- Nunes D. Pimentel A. Goncalves A. Pereira S. Branquinho R. Barquinha P. Fortunato E. Martins R. Metal oxide nanostructures for sensor applications Semicond. Sci. Technol. 2019 34 043001 10.1088/1361-6641/ab011e
- Zhao C. Yao S. Li C. Zhao S. Sun X. Wang K. Zhang X. Ma Y. Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors Chem. Eng. J. 2024 497 154535 10.1016/j.cej.2024.154535
- Park B. Nam S. Kang Y. Jeon S. Jo J. Park S. Kim Y. Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors Mater. Today Electron. 2024 8 100090 10.1016/j.mtelec.2024.100090
- Wang Z. Su J. Qi H. Pan P. Jiang M. Porous nanocrystalline WO3thin films: Fabrication, electrical and optical properties Surf. Inn. 2020 9 214 221 10.1680/jsuin.20.00049
- Banyamin Z. Kelly P. West G. Boardman J. Electrical and Optical Properties of Fluorine Dopes Tin Oxide Thin Films Prepared by Magnetron Sputtering Coatings 2014 4 732 746 10.3390/coatings4040732
- Yu X. Marks T. Facchetti A. Metal oxides for optoelectronic applications Nat. Mater. 2016 15 383 396 10.1038/nmat4599 27005918
- Kumbhakar P. Gowda C. Mahapatra P. Mukherjee M. Malviya K. Chaker M. Chandra A. Lahiri B. Ajayan P. Jariwala D. et al. Emerging 2D metal oxides and their applications Mater. Today 2021 45 142 168 10.1016/j.mattod.2020.11.023
- Rabadzhiyska S. Ormanova M. Valkov S. Dechev D. Terziyska P. Petrov P. Study of the structure, roughness and optical properties of HfO2coatings deposited on microscopic glass substrates J. Phys. Conf. Ser. 2022 2240 012011 10.1088/1742-6596/2240/1/012011
- Heard C. Cejka J. Opanasenko M. Nachtigall P. Centi G. Perathoner S. 2D oxide nanomaterials to address the energy transition and catalysis Adv. Mater. 2019 31 1801712 10.1002/adma.201801712 30132995
- Alhabradi M. Yang X. Alruwaili M. Chang H. Tahir A.A. Enhanced photoelectrochemical performance using cobalt-catalyst-loaded PVD/RF-Engineered WO3photoelectrodes Nanomaterials 2024 14 259 10.3390/nano14030259 38334530
- Ratova M. Sawtell D. Kelly P. Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications Coatings 2020 10 68 10.3390/coatings10010068
- Pourhashem S. Seif A. Saba F. Nezhad E. Ji X. Zhou Z. Zhai X. Mirzaee M. Duan J. Rashidi A. et al. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies J. Mater. Sci. Technol. 2022 118 73 113 10.1016/j.jmst.2021.11.061
- Desireddy S. Chacko S. A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment Rev. Environ. Sci. Bio Technol. 2021 20 697 728 10.1007/s11157-021-09581-1
- Nikolova M.P. Tzvetkov I. Dimitrova T.V. Ivanova V.L. Handzhiyski Y. Andreeva A. Valkov S. Ormanova M. Apostolova M.D. Effect of Co-sputtered copper and titanium oxide coatings on bacterial resistance and cytocompatibility of osteoblast cells Nanomaterials 2024 14 1148 10.3390/nano14131148 38998753
- Kannan P. Maduraiveeran G. Metal oxides nanomaterials and nanocomposite-based electrochemical sensors for healthcare applications Biosensors 2023 13 542 10.3390/bios13050542 37232903
- Thirugnanasambandam A. Gupta M. Murugapandian R. Biocompatibility and corrosion resistance of Si/ZrO2bioceramic coating on AZ91D using electron beam physical vapor deposition (EB-PVD) for advanced biomedical applications Metals 2024 14 607 10.3390/met14060607
- Ilievska I. Ivanova V. Dechev D. Ivanov N. Ormanova M. Nikolova M.P. Handzhiyski Y. Andreeva A. Valkov S. Apostolova M.D. Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi Coatings 2024 14 455 10.3390/coatings14040455
- Danish M. Bhattacharya A. Stepanova D. Mikhaylov A. Grilli M. Khosravy M. Senjyu T. A Ssystematic review of metal oxide applications for energy and environmental sustainability Metals 2020 10 1604 10.3390/met10121604
- Don C. Shalvey T. Sindi D. Lewis B. Swallow J. Bowen L. Fernandes D. Kubart T. Biswas D. Thakur P. et al. Reactive DC sputtered TiO2electron transport layers for cadmium-free Sb2Se3solar cells Adv. Energy Mater. 2024 14 2401077 10.1002/aenm.202401077
- Wojcieszak D. Mazur M. Indyka J. Jurkowska A. Kalisz M. Domanawski P. Kaczmarek D. Domaraszki J. Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process Mater. Sci. 2015 33 660 668 10.1515/msp-2015-0084
- Aissani L. Alhussein A. Zia A.W. Mamba G. Rtimi S. Magnetron sputtering of transition metal nitride thin films for environmental remediation Coatings 2022 12 1746 10.3390/coatings12111746
- Bobzin K. Brogelmann T. Kruppe N. Janowitz J. Smart PVD hard coatings with temperature sensor function Surf. Coat. Technol. 2021 423 127631 10.1016/j.surfcoat.2021.127631
- Popov A.A. Tikhonowski G.V. Shakhov P.V. Popova-Kuznetsova E.A. Tselikov G.I. Romanov R.I. Markeev A.M. Klimentov S.M. Kabashin A.V. Synthesis of Titanium Nitride Nanoparticles by Pulsed Laser Ablation in Different Aqueous and Organic Solutions Nanomaterials 2022 12 1672 10.3390/nano12101672 35630892
- Lu X. Zhang C. Wang C. Cao X. Ma R. Sui X. Hao J. Liu W. Investigation of (CrAlTiNbV)Nxhigh-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant Appl. Surf. Sci. 2021 557 149813 10.1016/j.apsusc.2021.149813
- Yang H. Weng C. Wang H. Yuan Z. Transition metal nitride-based materials as efficient electrocatalysts: Design strategies and prospective applications Coord. Chem. Rev. 2023 496 215410 10.1016/j.ccr.2023.215410
- Kadam S. Jose L. George N. Sreehari S. Nayana D. Pham D. Kadam K. Aravind A. Ma Y. Recent progress in transition metal nitride electrodes for supercapacitor, water splitting, and battery applications J. Alloys Compd. 2024 976 173083 10.1016/j.jallcom.2023.173083
- Dabees S. Mirzaei S. Kaspar P. Holcman V. Sobola D. Characterization and evaluation of engineered coating techniques for different Ccutting tools—Review Materials 2022 15 5633 10.3390/ma15165633 36013769
- Qin R. Shan G. Hu M. Huang W. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors Mater. Today Phys. 2021 21 100527 10.1016/j.mtphys.2021.100527
- Shirguppikar S. Patil M. Experimental investigation on micro-electro discharge machining process using tungsten carbide and titanium nitride-coated micro-tool electrode for machining of Ti-6Al-4V Adv. Mater. Process. Technol. 2020 8 187 204 10.1080/2374068X.2020.1833399
- Yousefi M. Baghshahi S. Kerahroodi M. Effect of titanium nitride, diamond-like carbon and chromium carbonitride coatings on the life time of an AISI M2 steel punch forming tool J. Bio- Tribo-Corr. 2021 7 50 10.1007/s40735-021-00483-x
- Bakdemir S. Ozkan D. Turkuz C. Salman S. Wear performance under dry and lubricated conditions of duplex treatment TiN/TiCrN coatings deposited with different numbers of CrN interlayers on steel substrates Wear 2023 526–527 204931 10.1016/j.wear.2023.204931
- Indupuri S. Kumar R. Prasad S. Kumar K. Islam A. Masoom S. Pandey S. Keshri A. Plasma sprayed aluminium nitride (AlN) coating: Microstructural, mechanical, tribological, and corrosion resistance performance J. Eur. Ceram. Soc. 2024 44 1458 1469 10.1016/j.jeurceramsoc.2023.10.027
- Krekeler T. Rout S. Krishnamurthy G. Stormer M. Arya M. Ganguly A. Sutherland D. Bozhevolnyi S. Ritter M. Pedersen K. et al. Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C Adv. Opt. Mater. 2021 9 2100323 10.1002/adom.202100323
- Wang S. Zhang Y. Qin Y. Lu J. Liu W. Improvement of TiN coating on comprehensive performance of NiTi alloy braided vascular stent Ceram. Int. 2023 49 13405 13413 10.1016/j.ceramint.2022.12.215
- Saad K. Saba T. Rashid A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life Heliyon 2024 10 e35541 10.1016/j.heliyon.2024.e35541 39220946
- Kelly P. Li H. Benson P. Whitehead K. Verran J. Arnell R. Iordanova I. Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings Surf. Coat. Technol. 2010 205 1606 1610 10.1016/j.surfcoat.2010.07.029
- Rojas N. Sanchez-Molina M. Sevilla G. Amores E. Almandoz E. Esparza J. Vivas M. Colominas C. Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions Int. J. Hydrogen Energy 2021 46 25929 25943 10.1016/j.ijhydene.2021.03.100
- Comakli O. Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films Ceram. Int. 2021 47 4149 4156 10.1016/j.ceramint.2020.09.292
- Liu J. Hao Z. Cui Z. Ma D. Lu J. Cui Y. Li C. Liu W. Xie S. Hu P. et al. Oxidation behavior, thermal stability, and the coating/substrate interface evolution of CrN-coated Zircaloy under high-temperature steam Corros. Sci. 2021 185 109416 10.1016/j.corsci.2021.109416
- Zhang K. Xin L. Ma T. Chang H. Lu Y. Feng C. Zhu S. Wang F. Investigation of the role of silicon in TiAlSiN coating deposited on TiAl alloys during long-term oxidation Corros. Sci. 2022 204 110394 10.1016/j.corsci.2022.110394
- Cheng Z. Qi W. Pang C. Thomas T. Wu T. Liu S. Yang M. Recent advances in transition metal nitride-based materials for photocatalytic applications Adv. Funct. Mater. 2021 31 2100553 10.1002/adfm.202100553
- Luo Q. Lu C. Liu L. Zhu M. review on the synthesis of transition metal nitride nanostructures and their energy related applications Green Energy Environ. 2023 8 406 437 10.1016/j.gee.2022.07.002
- Wang Z. Inoue Y. Hisatomi T. Ishikawa R. Wang Q. Takata T. Chen S. Shibata N. Ikuhara Y. Domen K. Overall water splitting by Ta3N5nanorod single crystals grown on the edges of KTaO3particles Nat. Catal. 2018 1 756 763 10.1038/s41929-018-0134-1
- Ebaid M. Min J. Zhao C. Ng T. Idriss H. Ooi B. Water splitting to hydrogen over epitaxially grown InGaN nanowires on metallic titanium/silicon template: Reduced interfacial transfer resistance and improved stability J. Mater. Chem. A 2018 16 6922 6930 10.1039/C7TA11338B
- Yang Z. Xu H. Shuai T. Zhan Q. Zhang Z. Huang K. Dai C. Li G. Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis Nanoscale 2023 15 11777 10.1039/D3NR01607B 37404024
- Belmonte M. Lopez-Navarrete G. Osendi M. Miranzo P. Heat dissipation in 3D printed cellular aluminum nitride structures J. Eur. Ceram. Soc. 2021 41 2407 2414 10.1016/j.jeurceramsoc.2020.12.005
- Kumaresan V. Sreekantan S. Devarajan M. Mohamed K. Non- oil bleed two-part silicone dispensable thermal gap filler with Al2O3and AlN filler for effective heat dissipation in electronics packaging J. Adhes. 2020 98 855 870 10.1080/00218464.2020.1860765
- Wei J. Chen N. Li L. Liu J. Zhao J. Wang C. He N. Effect of spoiler columns on heat transfer performance of aluminum nitride-based microchannel heat sink Ceram. Int. 2022 48 36226 36237 10.1016/j.ceramint.2022.08.180
- Chasnyk V. Chasnyk D. Fesenko I. Kaidash O. Turkevych V. Dielectric characteristics of pressureless sintered AlN-based composites in the 3–37 GHz frequency range J. Mater. Sci. Mater. Electron. 2021 32 2524 2534 10.1007/s10854-020-05019-6
- Radhika E. Samuel T. Dobbidi P. A modified sintering method to prepare phase pure AlN ceramics: Structural and dielectric studies for microwave applications Ceram. Int. 2022 48 29372 29385 10.1016/j.ceramint.2022.06.001
- Su Z. Yang H. Wang g. Zhang Y. Zhang J. Lin J. Jia D. Wang H. Lu Z. Hu P. Transparent and high-performance electromagnetic interference shielding composite film based on single-crystal graphene/hexagonal boron nitride heterostructure J. Colloid Interface Sci. 2023 640 610 618 10.1016/j.jcis.2023.02.115 36878078
- Xu J. Wu Q. Lu L. Chen J. Preparation and properties of a super-hydrophobic, electromagnetic interference shielding titanium nitride film Thin Solid Films 2023 783 140056 10.1016/j.tsf.2023.140056
- Bi J. Yang J. Liu X. Wang D. Yang Z. Liu G. Wang X. Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells Int. J. Hydrogen Energy 2021 46 1144 1154 10.1016/j.ijhydene.2020.09.217
- Adalati R. Sharma M. Sharma S. Kumar A. Malik G. Boukherroub R. Chandra R. Metal nitrides as efficient electrode material for supercapacitors: A review J. Energy Storage 2022 56 105912 10.1016/j.est.2022.105912
- Pramitha A. Raviprakash Y. Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials J. Energy Storage 2022 49 104120 10.1016/j.est.2022.104120
- Parveen N. Ansari M.O. Ansari S.A. Kumar P. Nanostructured titanium nitride and its composites as high-performance supercapacitor electrode material Nanomaterials 2023 13 105 10.3390/nano13010105 36616015
- Zhou Y. Guo W. Li T. A review on transition metal nitrides as electrode materials for supercapacitors Ceram. Int. 2019 45 21062 21076 10.1016/j.ceramint.2019.07.151
- Idrees M. Mukhtar A. Rehman A. Abbas S. Zhang Q. Li X. Transition metal nitride electrodes as future energy storage devices: A review Mater. Today Commun. 2021 27 102363 10.1016/j.mtcomm.2021.102363
- Ijaz S. Rana A. Ahmad Z. Rehman B. Zubair M. Mehmood M. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems Opt. Express 2021 29 31537 31548 10.1364/OE.438899 34615245
- Lucio-Porto R. Bouhtiyya S. Pierson J. Morel A. Capon F. Boulet P. Brousse T. VN thin films as electrode materials for electrochemical capacitors Electrochimica Acta 2014 141 203 211 10.1016/j.electacta.2014.07.056
- Lebreton A. Barbe J. Lethien C. Coleman J. Brousse T. Tuning Deposition Conditions for VN Thin Films Electrodes for Microsupercapacitors: Influence of the Thickness J. Electrochem. Soc. 2024 171 090513 10.1149/1945-7111/ad75be
- Prakash R. Kumar A. Pandey A. Kaur D. Binder free and high performance of sputtered tungsten nitride thin film electrode for supercapacitor device Int. J. Hydrogen Energy 2019 44 10823 10832 10.1016/j.ijhydene.2019.02.005
- Qi Z. Wei B. Wang J. Yang Y. Wang Z. Nanostructured porous CrN thin films by oblique angle magnetron sputtering for symmetric supercapacitors J. Alloys Compd. 2019 806 953 959 10.1016/j.jallcom.2019.07.325
- Sun N. Zhou D. Liu W. Shi S. Tian Z. Liu F. Li S. Wang J. Ali F. Tailoring surface chemistry and morphology of titanium nitridee for on-chip supercapacitors ACS Sustain. Chem. Eng. 2020 8 7869 7878 10.1021/acssuschemeng.0c00977
- Lin S. Zhang J. Zhu R. Fu S. Yun D. Effects of sputtering pressure on microstructure and mechanical properties of ZrN films deposited by magnetron sputtering Mater. Res. Bull. 2018 105 231 236 10.1016/j.materresbull.2018.04.054
- Aissani L. Alhussein A. Ayad A. Nouveau C. Zgheib E. Belgroune A. Zaabat M. Barille R. Relationship between structure, surface topography and tribo-mechanical behavior of Ti-N thin films elaborated at different N2flow rates Thin Solid Films 2021 724 138598 10.1016/j.tsf.2021.138598
- Aissani L. Fellah M. Chadli A. Samad M. Cheriet A. Salhi F. Nouveau C. Weiß S. Obrosov A. Alhussein A. Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering J. Mater. Sci. 2021 56 17319 17336 10.1007/s10853-021-06393-0
- Zhang H. Hu W. Wei B. Zheng J. Qi Z. Wang Z. Freestanding Co3N thin film for high performance supercapacitors Ceram. Int. 2021 47 3267 3271 10.1016/j.ceramint.2020.09.166
- Adalati R. Kumar A. Sharma M. Tiwari P. Chandra R. Catalyst free approach for the fabrication of CoN//Zn3N2asymmetric configuration for highly efficient flexible supercapacitor Appl. Phys. Lett. 2020 117 123904 10.1063/5.0019483
- Durai G. Kuppusami P. Maiyalagan T. Ahila M. Vinoth kumar P. Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering: Effect of different electrolytes Ceram. Int. 2019 45 17120 17127 10.1016/j.ceramint.2019.05.265
- Adalati R. Kumar A. Sharma M. Chandra R. Pt enhanced capacitive performance of Cr2N electrode toward flexible asymmetric supercapacitor Appl. Phys. Lett. 2021 118 183901 10.1063/5.0047038
- Achour A. Lucio-Porto R. Chaker M. Armanc A. Ahmadpourian A. Soussou M. Boujtita M. Le Brizoual L. Djouadi M. Brousse T. Titanium vanadium nitride electrode for micro-supercapacitors Electrochem. Commun. 2017 77 40 43 10.1016/j.elecom.2017.02.011
- Iordanova I. Kelly P. Burova M. Andreeva A. Stefanova B. Influence of thickness on the crystallography and surface topography of TiN nano-films deposited by reactive DC and pulsed magnetron sputtering Thin Solid Films 2012 520 5333 5339 10.1016/j.tsf.2012.03.097
- Iordanova I. Kelly P. Mirchev R. Antonov V. Crystallography of magnetron sputtered TiN coatings on steel substrates Vacuum 2007 81 830 842 10.1016/j.vacuum.2006.09.018
- Petrov P. Dechev D. Ivanov N. Hikov T. Valkov S. Nikolova M. Yankov E. Parshorov S. Bezdushnyi R. Andreeva A. Strudy of the influence on electron beam treatment of Ti5Al4V substrate on the mechanical properties and surface topography of multilayer TiN/TiO2coatings Vacuum 2018 154 264 271 10.1016/j.vacuum.2018.05.026
- Darjanov P. Marinova I. Darjanova D. Electrical Engineering II Amadeus’ Company Ltd. Sofia, Bulgaria 2006 223 954-9897-14-1
- Oliveira A. Brito G. Teixeira M. Mechanism of nanocomposite formation in the layer-by-layer single-step electropolymerization of π-conjugated azopolymer and reduced graphene oxide: An electrochemical impedance spectroscopy study ACS Omega 2020 5 25954 25967 10.1021/acsomega.0c03391 33073122
- Hauff E. Impedance spectroscopy for emerging photovoltaics J. Phys. Chem. C 2019 123 11329 11346 10.1021/acs.jpcc.9b00892
- Li B. Zhang S. Xia F. Huang Y. Ran X. Xia Y. Chen Y. Huang W. Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy J. Appl. Phys. 2020 128 085501 10.1063/5.0011868
- Szendrei A. Sparks T. Virkar A. Three and Four-Electrode Electrochemical Impedance Spectroscopy Studies Using Embedded Composite Thin Film Pseudo-Reference Electrodes in Proton Exchange Membrane Fuel Cells J. Electrochem. Soc. 2019 166 784 795 10.1149/2.0771912jes
- Yoo S. Yoon S. Anta J. Lee H. Boix P. Sero I. An equivalent circuit for perovskite solar cell bridging sensitized to thin film architectures Joule 2019 3 2535 2549 10.1016/j.joule.2019.07.014
- Nara H. Yokoshima T. Osaka T. Technology of electrochemical impedance spectroscopy for an energy-sustainable society Curr. Opin. Electrochem. 2020 20 66 77 10.1016/j.coelec.2020.02.026
- Magar H. Hassan R. Mulchandani A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications Sensors 2021 21 6578 10.3390/s21196578 34640898
- Zhang L. Dai Y. Li C. Dang Y. Zheng R. Wang Z. Wang Y. Cui Y. Arandiyan H. Shao Z. et al. Recent advances in electrochemical impedance spectroscopy for solid-state batteries Energy Storage Mater. 2024 69 103378 10.1016/j.ensm.2024.103378
- Lazanas A. Prodromidis M. Electrochemical impedance spectroscopy—A tutorial ACD Meas. Sci. Au 2023 3 162 193 10.1021/acsmeasuresciau.2c00070 37360038
- Wang S. Zhang J. Gharbi O. Vivier V. Gao M. Orazem M. Electrochemical impedance spectroscopy Nat. Rev. Methods Primers 2021 1 41 10.1038/s43586-021-00039-w
- Vadhva P. Hu J. Johnson M. Stocker R. Braglia M. Brett D. Rettie A. Electrochemical impedance spectroscopy for all-solid-state batteries: Theory, methods and future outlook ChemElectroChem 2021 8 1930 1947 10.1002/celc.202100108
- Freger V. Bason S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy I. Principles and theory J. Membr. Sci. 2007 302 1 9 10.1016/j.memsci.2007.06.046
- Jeong D. Schroeder H. Waser R. Impedance spectroscopy of TiO2thin films showing resistive switching Appl. Phys. Lett. 2006 89 082909 10.1063/1.2336621
- Larfaillou S. Guy-Bouyssou D. Cras F. Franger S. Comprehensive characterization of all-sloid-state thin films commercial microbatteries by electrochemical impedance spectroscopy J. Power Sources 2016 319 139 146 10.1016/j.jpowsour.2016.04.057
- Ciucci F. Modeling electrochemical impedance spectroscopy Curr. Opin. Electrochem. 2019 13 132 139 10.1016/j.coelec.2018.12.003
- Erinmwingbovo C. Siller V. Nunez M. Trocloli R. Brogioli D. Morata A. Mantia F. Dynamic impedance spectroscopy of LiMn2O4thin films made by multi-layer pulsed laser deposition Electrochim. Acta 2020 331 135385 10.1016/j.electacta.2019.135385
- Cesiulis H. Tsyntsaru N. Ramanavicius A. Ragoisha G. The study of thin films by electrochemical impedance spectroscopy Nanostructures and Thin Films for Multifunctional Applications Springer Nature Berlin, Germany 2016 Chapter 1 3 42
- Krammer M. Schmid A. Nenning A. Bumberger A. Siebenhofer M. Herzig C. Limbeck A. Rameshan C. Kubicek M. Fleig J. Closed-pore formation in oxygen electrodes for solid oxide electrolysis cells investigated by impedance spectroscopy ACS Appl. Mater. Interfaces 2023 15 8076 8092 10.1021/acsami.2c20731 36729502
- Pehlivan E. Granqvist C. Niklasson G. Electrochromic nickel-oxide-based thin films in KOH electrolyte: Ionic and electronic effects elucidated by impedance spectroscopy Sol. Energy Mater. Sol. Cells 2024 269 112795 10.1016/j.solmat.2024.112795
- Pehlivan E. Granqvist C. Niklasson G. Impedance Spectroscopy of Electrochromic Hydrous Tungsten Oxide Films Electron. Mater. 2021 2 312 323 10.3390/electronicmat2030022
- Shahkhatuni G. Aroutiounian V. Arakelyan V. Aleksanyan M. Shahnazaryan G. Investigation of sensor made of ZnO:La for detection of hydrogen peroxide vapours by impedance spectroscopy method J. Contemp. Phys. 2019 54 188 195 10.3103/S1068337219020117
- Kiew L. Chang C. Huang S. Wang P. Heh C. Liu C. Cheng C. Lu Y. Chen Y. Huang Y. et al. Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors Biosens. Bioelectron. 2021 183 113213 10.1016/j.bios.2021.113213 33857754
- Jokar A. Torabi S. Mirzaei M. Dabir D. Bakhtiargonbadi F. Esfahani H. Arrangement of n-type ZnO and p-type NiO nanofibrous thin films on FTO electrode for electrochemical impedance spectroscopy of glucose biosensors Surf. Interfaces 2025 56 105714 10.1016/j.surfin.2024.105714
- Schmidt R. Erenstein W. Winiecki T. Morrison F. Midgley P. Impedance spectroscopy of epitaxial multiferroic thin films Phys. Rev. B 2007 75 245111 10.1103/PhysRevB.75.245111
- Stoeva D. Kotlarski G. Dechev D. Ivanov N. Ormanova M. Mateev V. Marinova I. Formation and electrical conductance of TiO2coatings on Cu substrates J. Phys. Conf. Ser. 2025 2994 012025 10.1088/1742-6596/2994/1/012025
Issue
| Coatings, vol. 15, 2025, Switzerland, https://doi.org/10.3390/coatings15080869 |
|