Autors: Ganev, B. T., Marinov, M. B., Kralov, I. M., Ivanov A.
Title: Modeling and Validation of a Spring-Coupled Two-Pendulum System Under Large Free Nonlinear Oscillations
Keywords: MatLab, micro-mechanical sensors, nonlinear oscillations, numerical solution, pendulum spring systems

Abstract: Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of large-amplitude oscillations. This paper presents a combined numerical and experimental investigation of a mechanical system composed of two coupled pendulums, exhibiting significant nonlinear behavior due to elastic deformation throughout their motion. A mathematical model of the system was developed using the MatLab/Simulink ver.6.1 environment, considering gravitational, inertial, and nonlinear elastic restoring forces. One of the major challenges in accurately modeling such systems is accurately representing damping, particularly in the absence of dedicated dampers. In this work, damping coefficients were experimentally identified through decrement measurements and incorporated into the simulation model to improve predictive accuracy. The simulation outputs, including angular displacements, velocities, accelerations, and phase trajectories over time, were validated against experimental results obtained via high-precision inertial sensors. The comparison shows a strong correlation between numerical and experimental data, with minimal relative errors in amplitude and frequency. This research represents the first stage of a broader study aimed at analyzing forced and parametrically excited oscillations. Beyond validating the model, the study contributes to the design of a robust experimental framework suitable for further exploration of nonlinear dynamics. The findings have practical implications for the development and control of mechanical systems subject to dynamic loads, with potential applications in automation, vibration analysis, and system diagnostics.

References

  1. Palmieri P. A phenomenology of Galileo’s experiments with pendulums Br. Soc. Hist. Sci. 2009 42 479 513 10.1017/S0007087409990033
  2. Andriesse C. Huygens: The Man Behind the Principle Cambridge University Press Cambridge, UK 2005
  3. Tobin W. The Life and Science of Léon Foucault: The Man Who Proved the Earth Rotates Cambridge University Press Cambridge, UK 2003 272
  4. Amore P. Aranda A. Improved Linstedt-Poincare method for the solution of nonlinear problems J. Sound Vib. 2005 283 1115 1136 10.1016/j.jsv.2004.06.009
  5. Cveticanin L. Strong Nonlinar Oscilators, Analitical Solution 2nd ed. Springer International Publishing AG Cham, Switzerland 2018 317
  6. Pisarev A. Mechanical Vibrations Tehnika Sofia, Bulgaria 1985 288
  7. Cheshankov B. Theory of Vibrations TU Sofia Sofia, Bulgaria 1992 254
  8. Nikolov S. Sinapov P. Kralov I. Ignatov I. An analytical study of the dual mass mechanical system stability AIP Conference Proceedings American Institute of Physics College Park, MD, USA 2011 Volume 1410 24 31
  9. Dimova B. Tsonev V. Nenova M. On the Stress Calculation of the Uniform Strength Rotating Disks of Variable Thicknesses Proceedings of the 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST) Sozopol, Bulgaria 1–3 July 2024
  10. Polczynski K. Skurativskyi S. Bednarek M. Awrejcewicz J. Nonlinear oscillations of coupled pendulums subjected to an external magnetic stimulus Mech. Syst. Signal Process. 2021 154 107560 10.1016/j.ymssp.2020.107560
  11. Mazaheri H. Hosseinzadeh A. Ahmadian M.T. Nonlinear oscillation analysis of a pendulum wrapping on a cylinder Sci. Iran. B 2012 19 335 340 10.1016/j.scient.2012.02.014
  12. Smirnov A. Smolnikov B. Nonlinear oscillation modes of double pendulum IOP Conf. Ser. Mater. Sci. Eng. 2021 1129 012042 10.1088/1757-899X/1129/1/012042
  13. D’Alessio S. An analytical, numerical and experimental study of the double pendulum Eur. J. Phys. 2023 44 015002 10.1088/1361-6404/ac986b
  14. Yao Y. Numerical study on the influence of initial conditions on quasi-periodic oscillation of double pendulum system J. Phys. Conf. Ser. 2020 1437 012093 10.1088/1742-6596/1437/1/012093
  15. Espíndola R. Del Valle G. Hernández G. Pineda I. Muciño D. Díaz P. Guijosa S. The Double Pendulum of Variable Mass: Numerical Study for different cases J. Phys. Conf. Ser. 2019 1221 012049 10.1088/1742-6596/1221/1/012049
  16. Li-jie C. Research on the Nonlinear Dynamical Behavior of Double Pendulum Proceedings of the IEEE 2011 International Conference on Mechatronic Science, Electric Engineering and Computer Jilin, China 19–22 August 2011
  17. Polczynski K. Wijata A. Awrejcewicz J. Wasilewski G. Numerical and experimental study of dynamics of two pendulums under a magnetic field Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2019 233 441 453 10.1177/0959651819828878
  18. Fradkov A. Andrievsky B. Synchronization and phase relations in the motion of two-pendulum system Int. J. Non-Linear Mech. 2007 42 895 901 10.1016/j.ijnonlinmec.2007.03.016
  19. Struble R. Heinbockel J. Resonant Oscillations of Beam-Pendulum Sytem J. Appl. Mech. 1963 30 181 188 10.1115/1.3636509
  20. Lai S.K. Lim C.W. Lin Z. Zhang W. Analytical analysis for large-amplitude oscillation of a rotational pendulum system Appl. Math. Comput. 2011 217 6115 6124 10.1016/j.amc.2010.12.089
  21. Petrova A. Vanovskiya V. Nonlinear Oscillations of a Spring Pendulum at the 1:1:2 Resonance: Theory, Experiment, and Physical Analogies Proc. Steklov Inst. Math. 2018 300 159 167 10.1134/S0081543818010133
  22. Maiti S. Roy J. Mallik A. Bhattacharjee J. Nonlinear dynamics of a rotating double pendulum Phys. Lett. A 2016 380 408 412 10.1016/j.physleta.2015.11.003
  23. Weibel S. Baillieul J. Open-loop oscillatory stabilization of an n-pendulum Int. J. Control 1998 71 931 957 10.1080/002071798221641
  24. Pust L. Peterka F. Stepan G. Tomlinson G. Tondl A. Nonlinear oscillations in machines and mechanisms theory Mech. Mach. Theory 1999 34 1237 1253 10.1016/S0094-114X(98)00068-8
  25. Markeev A. On the Stability of Nonlinear Vibrations of Coupled Pendulums Mech. Solids 2013 48 370 379 10.3103/S0025654413040031
  26. Gilchrist A. The free oscillations of conservative quasilinear systems with two degrees of freedom Int. J. Mech. Sei. 1961 3 286 311 10.1016/0020-7403(61)90027-3
  27. Ganev B.T. Experimental Setup for Studying the Oscillations of Two Degrees of Freedom Spring Systems Proceedings of the 2024 23rd International Symposium on Electrical Apparatus and Technologies (SIELA) Bourgas, Bulgaria 12–15 June 2024
  28. Nasif A. Johnes D.I. Henderson J. Vibration Damping John Wiley & Sons Hoboken, NJ, USA 1985
  29. Data Sheet, BNO055 Intelligent 9-Axis Absolute Orientation Sensor, Document Revision1.8, Document Number BST-BNO055-DS000-18 2021 Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf (accessed on 10 May 2025)

Issue

Machines, vol. 13, 2025, Albania, https://doi.org/10.3390/machines13080660

Copyright MDPI mashines

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science