Оригинал (Original)
Автори: Чукалов, К. С., Касабов, П. П.
Заглавие: Съвременни антивибрационни технологии за разстъргване на дълбоки отвори
Ключови думи: анти-вибрационна борщанга; разстъргване; вибрации; демпфиран

Абстракт: Настоящата обзорна статия разглежда развитието на антивибрационните борщанги за разстъргване на отвори, като акцентира върху материалите, конструктивните решения и технологиите, използвани за намаляване на самовъзбуждащите се вибрации при вътрешна механична обработка. Представени са съвременни инструментални материали– от въглеродни и легирани стомани до композити и сплави с памет на формата. Анализирани са иновативни демпфиращи технологии, включително пасивни и активни системи, пиезоелектрични актуатори, вибрационни абсорбери и интелигентни системи за мониторинг. Цитирани са множество експериментални и теоретични разработки на водещи изследователски екипи, които демонстрират ефективността на съвременните решения за потискане на вибрациите при разстъргване. Направен е извод, че бъдещето на антивибрационните борщанги е в интеграцията на адаптивни алгоритми, сензори в реално време и интелигентни материали, които могат да отговорят на изискванията на прецизната и автоматизирана индустрия

Библиография

  1. ASM International, Properties and Selection: Irons, Steels, and HighPerformance Alloys. ASM International, 2002. ISBN: 978-0871703774. 2. Sandvik Coromant, “GC4335 Carbide Grades”, 2023. [Online]. Available: https://www.sandvik.coromant.com (Accessed: January 3, 2025). 3. Kennametal, “KCU25 Turning Inserts”, 2022. [Online]. Available: https://www.kennametal.com (Accessed: January 3, 2025). 4. LMT Tools, “VSMbar Composite Boring Bars”, 2023. [Online]. Available: https://www.lmt-tools.com (Accessed: January 3, 2025). 5. Т. Тодоров, Р. Николов и Я. Ралев, “Експериментално изследване на сплави с памет на формата чрез специализиран стенд”,Българско списание за инженерно проектиране, бр. 29, април 2016 г. 6. Oerlikon Balzers, “BALINIT® Coatings for Cutting Tools”, 2024. [Online]. Available: https://www.oerlikon.com/balzers (Accessed: January 3, 2025). 7. Dynalloy Inc., www.dynalloy.com (Accessed: January 3, 2025). 8. D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications. Springer, 2008. [Online]. Available: https://doi.org/10.1007/978-0-387-47685-8. (Accessed: January 3, 2025). 9. T. Suyama, N. Hara, T. Fujimura and H. Noguchi, “The use of carbide and particledamped bars to increase tool overhang in the internal turning of hardened steel”, International Journal of Advanced Manufacturing Technology, vol. 79, no. 1– 4, pp. 363–370, 2015. [Online]. Available: https://doi.org/10.1007/s00170-015-8328-z (Accessed: January 3, 2025). 10.J. Zhang, X. Zhao and S. Zhang, “Chatter and stability analysis of the slender composite boring bar with constrained damping layer”, Applied Sciences, vol. 10, no. 13, p. 4537, 2020. [Online]. Available: https://doi.org/10.3390/app10134537. (Accessed: January 3, 2025). 11.M. Sortino, R. Ciancio and S. Modica, “Experimental analysis of the influence of tool holder materials and tool overhang on the stability of boring operations”, International Journal of Machine Tools and Manufacture, vol. 48, no. 3–4, pp. 394–400, 2008. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2007.0 8.004. (Accessed: January 3, 2025). 12.M. Sortino, R. Ciancio and G. Totis, “A hybrid dynamic model for boring bar design”, International Journal of Machine Tools and Manufacture, vol. 50, no. 3, pp. 278–285, 2010. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2009.1 1.006. (Accessed: January 3, 2025). 13.J. E. Houck, T. M. Lavin and R. G. Landers, “Analysis of the vibration characteristics of a boring bar with a variable stiffness dynamic vibration absorber”, Advances in Mechanical Engineering, vol. 11, no. 1, pp. 1–11, 2019. [Online]. Available: https://doi.org/10.1177/1687814018820680. (Accessed: January 3, 2025). 14.M. H. Miguélez, A. Soldani and A. Fernández-Vicente, “Improvement of chatter stability in boring operations with passive vibration absorbers”, International Journal of Mechanical Sciences, vol. 52, no. 10, pp. 1376–1384, 2010. [Online]. Available: https://doi.org/10.1016/j.ijmecsci.2010.05.0

Издание

МЛАДЕЖКИ ФОРУМ „НАУКА, ТЕХНОЛОГИИ, ИНОВАЦИИ, БИЗНЕС“ 2025 пролет, том 1, стр. стр. 280-287, 2025, България, Пловдив, Дом на техниката и културата Пловдив, ISSN 2367-8569

Издателските права се държат от МЛАДЕЖКИ ФОРУМ „НАУКА, ТЕХНОЛОГИИ, ИНОВАЦИИ, БИЗНЕС“ 2025 пролет

Пълен текст на публикацията

Autors: Chukalov, K. S., Kasabov, P. P.
Title: CURRENT ANTI-VIBRATION TECHNOLOGIES AND DEEP HOLES BORING TOOLS – A REVIEW
Keywords: anti–vibration boring bar, vibrations, damping system, piezoelectric actuator, composite materials

Abstract: The review article discusses the development of anti-vibration deep holes boring, focusing on materials, design solutions and technologies used to reduce unwanted vibrations in internal machining. Historical aspects related to the evolution of tool materials from carbon and alloy steels to composites and shape memory alloys are presented. Innovative damping approaches are analyzed, including passive and active systems, piezoelectric actuators, vibration absorbers, and intelligent monitoring systems. Numerous experimental and theoretical papers by leading research teams are cited to demonstrate the effectiveness of current solutions for vibration suppression in reaming. It is concluded that the future of anti-vibration boring machines lies in the integration of adaptive algorithms, real-time sensors and intelligent materials that can meet the demands of precision and automated industry.

References

  1. ASM International, Properties and Selection: Irons, Steels, and HighPerformance Alloys. ASM International, 2002. ISBN: 978-0871703774. 2. Sandvik Coromant, “GC4335 Carbide Grades”, 2023. [Online]. Available: https://www.sandvik.coromant.com (Accessed: January 3, 2025). 3. Kennametal, “KCU25 Turning Inserts”, 2022. [Online]. Available: https://www.kennametal.com (Accessed: January 3, 2025). 4. LMT Tools, “VSMbar Composite Boring Bars”, 2023. [Online]. Available: https://www.lmt-tools.com (Accessed: January 3, 2025). 5. Т. Тодоров, Р. Николов и Я. Ралев, “Експериментално изследване на сплави с памет на формата чрез специализиран стенд”,Българско списание за инженерно проектиране, бр. 29, април 2016 г. 6. Oerlikon Balzers, “BALINIT® Coatings for Cutting Tools”, 2024. [Online]. Available: https://www.oerlikon.com/balzers (Accessed: January 3, 2025). 7. Dynalloy Inc., www.dynalloy.com (Accessed: January 3, 2025). 8. D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications. Springer, 2008. [Online]. Available: https://doi.org/10.1007/978-0-387-47685-8. (Accessed: January 3, 2025). 9. T. Suyama, N. Hara, T. Fujimura and H. Noguchi, “The use of carbide and particledamped bars to increase tool overhang in the internal turning of hardened steel”, International Journal of Advanced Manufacturing Technology, vol. 79, no. 1– 4, pp. 363–370, 2015. [Online]. Available: https://doi.org/10.1007/s00170-015-8328-z (Accessed: January 3, 2025). 10.J. Zhang, X. Zhao and S. Zhang, “Chatter and stability analysis of the slender composite boring bar with constrained damping layer”, Applied Sciences, vol. 10, no. 13, p. 4537, 2020. [Online]. Available: https://doi.org/10.3390/app10134537. (Accessed: January 3, 2025). 11.M. Sortino, R. Ciancio and S. Modica, “Experimental analysis of the influence of tool holder materials and tool overhang on the stability of boring operations”, International Journal of Machine Tools and Manufacture, vol. 48, no. 3–4, pp. 394–400, 2008. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2007.0 8.004. (Accessed: January 3, 2025). 12.M. Sortino, R. Ciancio and G. Totis, “A hybrid dynamic model for boring bar design”, International Journal of Machine Tools and Manufacture, vol. 50, no. 3, pp. 278–285, 2010. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2009.1 1.006. (Accessed: January 3, 2025). 13.J. E. Houck, T. M. Lavin and R. G. Landers, “Analysis of the vibration characteristics of a boring bar with a variable stiffness dynamic vibration absorber”, Advances in Mechanical Engineering, vol. 11, no. 1, pp. 1–11, 2019. [Online]. Available: https://doi.org/10.1177/1687814018820680. (Accessed: January 3, 2025). 14.M. H. Miguélez, A. Soldani and A. Fernández-Vicente, “Improvement of chatter stability in boring operations with passive vibration absorbers”, International Journal of Mechanical Sciences, vol. 52, no. 10, pp. 1376–1384, 2010. [Online]. Available: https://doi.org/10.1016/j.ijmecsci.2010.05.0

Issue

YOUTH FORUMS „SCIENCE, TECHNOLOGY, INNOVATION, BUSINESS“ 2025, vol. 1, pp. 280-287, 2025, Bulgaria, Plovdiv, Дом на техниката и културата Пловдив, ISSN 2367-8569

Copyright МЛАДЕЖКИ ФОРУМ „НАУКА, ТЕХНОЛОГИИ, ИНОВАЦИИ, БИЗНЕС“ 2025 пролет

Full text of the publication

Вид: пленарен доклад в национален форум, публикация в реферирано издание