Autors: Neznakomova, M. P., Salaün F., Dineff P.D., Tsanev, T. D., Gospodinova, D. N.
Title: Structural and Thermal Effects of Beeswax Incorporation in Electrospun PVA Nanofibers
Keywords: beeswax, biodegradation, electrospinning, nanofibers, polyvinyl alcohol, thermal stability, wound dressing

Abstract: This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, conductivity, and surface tension—were systematically evaluated. Electrospinning was performed at 30 kV and a working distance of 14.5 cm, yielding nanofibers with diameters between 125 and 425 nm. Scanning electron microscopy (SEM) revealed increased surface roughness and diameter variability in PVA/BW fibers compared to the PVA. Fourier transform infrared spectroscopy (FTIR) confirmed physical incorporation of BW without evidence of chemical bonding. Thermogravimetric and differential scanning calorimetry analyses (TGA/DSC) demonstrated altered behavior and an expanded profile of temperature transitions due to the waxy components. The solubility test of the nanofiber mat in saline indicated that BW slows dissolution and improves the structural integrity of the fibers. This study demonstrates, for the first time, the incorporation of beeswax into electrospun PVA nanofibers with improved structural and thermal properties, indicating potential for further exploration in biomedical material design.

References

  1. Bonakdar M.A. Rodrigue D. Electrospinning: Processes, Structures, and Materials Macromol 2024 4 58 103 10.3390/macromol4010004
  2. Bölgen N. Demir D. Aşık M. Sakım B. Vaseashta A. Introduction and Fundamentals of Electrospinning Electrospun Nanofibers: Principles, Technology and Novel Applications Vaseashta A. Bölgen N. Springer International Publishing Cham, Switzerland 2022 3 34 10.1007/978-3-030-99958-2_1
  3. Figen A.K. History, Basics, and Parameters of Electrospinning Technique Electrospun Materials and Their Allied Applications John Wiley & Sons, Ltd. Hoboken, NJ, USA 2020 53 69 10.1002/9781119655039.ch2
  4. Neznakomova M.P. Salaün F. Gospodinova D.N. Preparation and Characterization of Electrospun Nutraceptic Nanofibers from Polyvinyl Alcohol/Beeswax Proceedings of the 2023 International Scientific Conference on Computer Science (COMSCI) Sozopol, Bulgaria 18–20 September 2023 1 6 10.1109/COMSCI59259.2023.10315905
  5. Xue J. Wu T. Dai Y. Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications Chem. Rev. 2019 119 5298 5415 10.1021/acs.chemrev.8b00593
  6. Kopp A. Smeets R. Gosau M. Kröger N. Fuest S. Köpf M. Kruse M. Krieger J. Rutkowski R. Henningsen A. et al. Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens Bioact. Mater. 2020 5 241 252 10.1016/j.bioactmat.2020.01.010
  7. Anjum S. Rahman F. Pandey P. Arya D.K. Alam M. Rajinikanth P.S. Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine Int. J. Mol. Sci. 2022 23 9206 10.3390/ijms23169206 36012473
  8. Vitchuli N. Shi Q. Nowak J. McCord M. Bourham M. Zhang X. Electrospun ultrathin nylon fibers for protective applications J. Appl. Polym. Sci. 2010 116 2181 2187 10.1002/app.31825
  9. Huang C. Xu X. Fu J. Yu D.-G. Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing Polymers 2022 14 3266 10.3390/polym14163266
  10. Kotni T.R. Pandey S. Shekhar S. Ranjan R. Srivastava P.S. Synthesis of PVA nano fibers by using electrospinning Mater. Today Proc. 2023 80 1158 1161 10.1016/j.matpr.2022.12.124
  11. Bognitzki M. Hou H. Ishaque M. Frese T. Hellwig M. Schwarte C. Schaper A. Wendorff J.H. Greiner A. Polymer, Metal, and Hybrid Nano- and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process) Adv. Mater. 2000 12 637 640 10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
  12. Fan T. Qin J. Meng X. Li J. Liu Q. Wang G. Biodegradable membrane of poly(l-lactide acid-dioxanone-glycolide) and stereocomplex poly(lactide) with enhanced crystallization and biocompatibility Front. Bioeng. Biotechnol. 2022 10 1021218 10.3389/fbioe.2022.1021218
  13. Flores-Rojas G.G. Gómez-Lazaro B. López-Saucedo F. Vera-Graziano R. Bucio E. Mendizábal E. Electrospun Scaffolds for Tissue Engineering: A Review Macromol 2023 3 31 10.3390/macromol3030031
  14. Nguyen T.D. Roh S. Nguyen M.T.N. Lee J.S. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications Micromachines 2023 14 2022 10.3390/mi14112022 38004879
  15. Zulkifli M.Z.A. Nordin D. Shaari N. Kamarudin S.K. Overview of Electrospinning for Tissue Engineering Applications Polymers 2023 15 2418 10.3390/polym15112418
  16. Chen L. Wang S. Yu Q. Topham P.D. Chen C. Wang L. A comprehensive review of electrospinning block copolymers Soft Matter 2019 15 2490 2510 10.1039/C8SM02484G 30860535
  17. Yang J. Hu J. Electrospun Polyurethanes Polyurethanes: Preparation, Properties, and Applications Volume 2: Advanced Applications ACS Symposium Series, no. 1453 American Chemical Society Washington, DC, USA 2023 Volume 1453 119 131 10.1021/bk-2023-1453.ch007
  18. Al-Abduljabbar A. Farooq I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications Polymers 2023 15 65 10.3390/polym15010065 36616414
  19. Maran B.A.V. Jeyachandran S. Kimura M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications J. Compos. Sci. 2024 8 32 10.3390/jcs8010032
  20. Kyuchyuk S. Paneva D. Karashanova D. Markova N. Georgieva A. Toshkova R. Manolova N. Rashkov I. Core-Sheath-Like Poly(Ethylene Oxide)/Beeswax Composite Fibers Prepared by Single-Spinneret Electrospinning. Antibacterial, Antifungal, and Antitumor Activities Macromol. Biosci. 2022 22 2200015 10.1002/mabi.202200015
  21. Kyuchyuk S. Paneva D. Manolova N. Rashkov I. Karashanova D. Naydenov M. Markova N. Electrospun Fibers of Biocompatible and Biodegradable Polyesters, Poly(Ethylene Oxide) and Beeswax with Anti-Bacterial and Anti-Fungal Activities Materials 2023 16 4882 10.3390/ma16134882
  22. Blachowicz T. Ehrmann A. Conductive Electrospun Nanofiber Mats Materials 2020 13 152 10.3390/ma13010152
  23. Buchko C.J. Kozloff K.M. Martin D.C. Surface characterization of porous, biocompatible protein polymer thin films Biomaterials 2001 22 1289 1300 10.1016/S0142-9612(00)00281-7
  24. Chernonosova V. Khlebnikova M. Popova V. Starostina E. Kiseleva E. Chelobanov B. Kvon R. Dmitrienko E. Laktionov P. Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection Polymers 2023 15 3202 10.3390/polym15153202
  25. Soukarie D. Nocete L. Bittner A.M. Santiago I. DNA data storage in electrospun and melt-electrowritten composite nucleic acid-polymer fibers Mater. Today Bio 2024 24 100900 10.1016/j.mtbio.2023.100900 38234463
  26. Biagiotti M. Bassani G.A. Chiarini A. Vincoli V.T. Dal Prà I. Cosentino C. Alessandrino A. Taddei P. Freddi G. Electrospun Silk Fibroin Scaffolds for Tissue Regeneration: Chemical, Structural, and Toxicological Implications of the Formic Acid-Silk Fibroin Interaction Front. Bioeng. Biotechnol. 2022 10 833157 10.3389/fbioe.2022.833157
  27. Habibzadeh F. Sadraei S.M. Mansoori R. Chauhan N.P.S. Sargazi G. Nanomaterials supported by polymers for tissue engineering applications: A review Heliyon 2022 8 e12193 10.1016/j.heliyon.2022.e12193
  28. Kidoaki S. Kwon I.K. Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques Biomaterials 2005 26 37 46 10.1016/j.biomaterials.2004.01.063
  29. Gaaz T.S. Sulong A.B. Akhtar M.N. Kadhum A.A.H. Mohamad A.B. Al-Amiery A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites Molecules 2015 20 19884 10.3390/molecules201219884 26703542
  30. Özekmekci M. Ünlü D. Çopur M. PVA/Amberlit IRA 743 Hibrit Membran İle Endüstriyel Atık Sudan Bor Giderimi 2021 Available online: https://hdl.handle.net/20.500.12885/1990 (accessed on 15 May 2025)
  31. Park J.C. Ito T. Kim K.O. Kim K.W. Kim B.S. Khil M.S. Kim H.Y. Kim I.S. Electrospun poly(vinyl alcohol) nanofibers: Effects of degree of hydrolysis and enhanced water stability Polym. J. 2010 42 273 276 10.1038/pj.2009.340
  32. Hamilton R.J. Chemistry and Biochemistry of Natural Waxes Biochem. Soc. Trans. 1978 6 704 10.1042/bst0060704
  33. Patel S. Nelson D.R. Gibbs A.G. Chemical and physical analyses of wax ester properties J. Insect Sci. 2001 1 1 7 10.1673/031.001.0401
  34. Liu D. Duan Y. Wang S. Gong M. Dai H. Improvement of Oil and Water Barrier Properties of Food Packaging Paper by Coating with Microcrystalline Wax Emulsion Polymers 2022 14 1786 10.3390/polym14091786
  35. Trinh B.M. Smith M. Mekonnen T.H. A nanomaterial-stabilized starch-beeswax Pickering emulsion coating to extend produce shelf-life Chem. Eng. J. 2022 431 133905 10.1016/j.cej.2021.133905
  36. Zhang Y. Simpson B.K. Dumont M.-J. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study Food Biosci. 2018 26 88 95 10.1016/j.fbio.2018.09.011
  37. Brito-Pereira R. Ribeiro C. Tubio C.R. Castro N. Costa P. Lanceros-Mendez S. Beeswax multifunctional composites with thermal-healing capability and recyclability Chem. Eng. J. 2023 453 139840 10.1016/j.cej.2022.139840
  38. Dobrosielska M. Dobrucka R. Kozera P. Brząkalski D. Gabriel E. Głowacka J. Jałbrzykowski M. Kurzydłowski K.J. Przekop R.E. Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth composites Sci. Rep. 2023 13 1161 10.1038/s41598-023-28435-0 36670202
  39. Sowmya B. Panda P.K. Electrospun poly (ε-caprolactone)/beeswax based super-hydrophobic anti-adhesive nanofibers as physical barriers for impeding fibroblasts invasion J. Biomater. Appl. 2023 38 681 691 10.1177/08853282231212604 37926902
  40. Zou F. Tan C. Shinali T.S. Zhang B. Zhang L. Han Z. Shang N. Plant antimicrobial peptides: A comprehensive review of their classification, production, mode of action, functions, applications, and challenges Food Funct. 2023 14 5492 5515 10.1039/D3FO01119D 37278147
  41. Ahn K. Kambiz S. Park K. Seo J. Enhancing polyvinyl alcohol surface properties through pre-drying treatment and modified electrospun polycaprolactone nanofibers Prog. Org. Coat. 2024 194 108621 10.1016/j.porgcoat.2024.108621
  42. Szumała P. Luty N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability Colloids Surf. Physicochem. Eng. Asp. 2016 499 131 140 10.1016/j.colsurfa.2016.04.022
  43. Bogdanov S. Nature and Origin of the Antibacterial Substances in Honey LWT-Food Sci. Technol. 1997 30 748 753 10.1006/fstl.1997.0259
  44. Lazarov S. Veleva P. Zhelyazkova I. Physicochemical characteristics of Bulgarian bee honey: Part 1 Bulg. J. Agric. Sci. 2022 Available online: https://journal.agrojournal.org/page/en/details.php?article_id=3758&tab=en (accessed on 16 November 2024)
  45. Filatov Y. Elektroformovanie Voloknistykh Materialov, Monograhy, Neft and Gas: Moscow, Russia, 2001 Available online: https://scholar.google.com/scholar_lookup?&title=Elektroformovanie%20voloknistykh%20materialov&publication_year=2001&author=Filatov%2CYu.N (accessed on 6 June 2024)
  46. Nayak P. Ghosh A.K. Bhatnagar N. Investigation of Solution Rheology in Electrospinning of Ultra High Molecular Weight Polyethylene Fibers Polym. 2022 23 48 57 10.1007/s12221-021-0374-6
  47. Hotaling N.A. Bharti K. Kriel H. Simon C.G. DiameterJ: A validated open source nanofiber diameter measurement tool Biomaterials 2015 61 327 338 10.1016/j.biomaterials.2015.05.015
  48. Stanger J.J. Tucker N. Buunk N. Truong Y.B. A comparison of automated and manual techniques for measurement of electrospun fibre diameter Polym. Test. 2014 40 4 12 10.1016/j.polymertesting.2014.08.002
  49. Rebia R.A. Sadon N.S.B. Tanaka T. Natural Antibacterial Reagents (Centella, Propolis, and Hinokitiol) Loaded into Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications Nanomaterials 2019 9 1665 10.3390/nano9121665 31766678
  50. Razavizadeh B.M. Niazmand R. Characterization of polyamide-6/ propolis blended electrospun fibers Heliyon 2020 6 e04784 10.1016/j.heliyon.2020.e04784
  51. Svečnjak L. Baranović G. Vinceković M. Prđun S. Bubalo D. Gajger I.T. An Approach for Routine Analytical Detection of Beeswax Adulteration Using FTIR-ATR Spectroscopy J. Apic. Sci. 2015 59 37 49 10.1515/jas-2015-0018
  52. Wu X. Wang Z. Teng J. Yang L. Xu S. Luo S. Wu Z. Ye C. Electrospun microfiber composite scaffolds of polyvinyl alcohol, polyhydroxybutyrate, and multiwalled carbon nanotubes for enhancing the osteogenic differentiation of stem cells to promote bone regeneration Int. J. Biol. Macromol. 2025 309 142988 10.1016/j.ijbiomac.2025.142988
  53. Alexy P. Káchová D. Kršiak M. Bakoš D. Šimková B. Poly(vinyl alcohol) stabilisation in thermoplastic processing Polym. Degrad. Stab. 2002 78 413 421 10.1016/S0141-3910(02)00177-5
  54. Tran N.H.A. Brünig H. Hinüber C. Heinrich G. Melt Spinning of Biodegradable Nanofibrillary Structures from Poly(lactic acid) and Poly(vinyl alcohol) Blends Macromol. Mater. Eng. 2014 299 219 227 10.1002/mame.201300125
  55. Buchwald R. Breed M.D. Greenberg A.R. The thermal properties of beeswaxes: Unexpected findings J. Exp. Biol. 2008 211 121 127 10.1242/jeb.007583
  56. Schuman Y. Thermal Analysis of Phase Change Materials—Three Organic Waxes Using TGA, DSC, and Modulated DSC®—TA Instruments. TA Instruments, TA405 Available online: https://www.tainstruments.com/applications-notes/thermal-analysis-of-phase-change-materials-three-organic-waxes-using-tga-dsc-and-modulated-dsc/ (accessed on 7 June 2024)
  57. Ritger P.L. Peppas N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs J. Control. Release 1987 5 23 36 10.1016/0168-3659(87)90034-4
  58. Enayati M.S. Behzad T. Sajkiewicz P. Bagheri R. Ghasemi-Mobarakeh L. Łojkowski W. Pahlevanneshan Z. Ahmadi M. Crystallinity Study of Electrospun Poly (Vinyl Alcohol) Nanofibers: Effect of Electrospinning, Filler Incorporation, and Heat Treatment Iran. Polym. J. 2016 25 647 659 10.1007/s13726-016-0455-3

Issue

Materials, vol. 18, 2025, Albania, https://doi.org/10.3390/ma18143293

Цитирания (Citation/s):
1. Yeom, GL, Lee, HN, Kim, YB, Park, JY, Park, GY, Shin, JW, Seo, HS, Kim, JH, Effects of different sealing materials for cracked hatching eggs on hatchability, hatching characteristics, and early growth performance of broiler chicks, TROPICAL ANIMAL HEALTH AND PRODUCTION, vol 57, 2025, issn: 0049-4747, eissn: 1573-7438, art_no: ARTN 466, doi: 10.1007/s11250-025-04716-w, pmid: MEDLINE:41182480 - 2025 - в издания, индексирани в Scopus и/или Web of Science
2. Zhong Y., Zhao Y., Sun Y., Kong X., Wang L., Xu B., Synergistic copper oxide / polydopamine enhancement of flexible composites: Toward high-efficiency photothermal conversion and thermal management in building envelopes, 2026, Solar Energy Materials and Solar Cells, issue 0, vol. 296, DOI 10.1016/j.solmat.2025.114072, issn 09270248 - 2025 - в издания, индексирани в Scopus

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science