Autors: Stefanov, B. I. Title: Photoelectrochemical and photocatalytic activity of photodeposition-functionalized Ag/TiO2 and MnOx/TiO2 thin films Keywords: Ag, MnO, Photocatalysis, Photodeposition, Photoelectrochemical activity, Titanium dioxideAbstract: Ag and MnOx species were photodeposited at varying UV irradiation doses (DUV) in the 0 – 10 J cm−2 range, and their effects on film properties were evaluated through photoelectrochemical (PEC) measurements, and Methylene blue photocatalytic oxidation (PCO) screening. Results revealed that both Ag and MnOx functionalization exhibit an optimal DUV that maximizes PEC performance, with the Ag/TiO2 photoanode at DUV = 5 J cm−2 achieving a ∼20 % increase in photocurrent density compared to pristine TiO2. Conversely, MnOx functionalization consistently inhibited PEC and PCO activity, particularly at higher DUV. Mott–Schottky and EIS analyses confirmed improved charge separation and reduced charge-transfer resistance in optimally functionalized samples. Photodeposition-functionalized photoanodes outperformed dark-functionalized (0 J cm−2) ones, underscoring UV-assisted photodeposition as a flexible and effective surface modification strategy. References - Morshedy, A.S., El-Fawal, E., Zaki, T., El-Zahhar, A.A., Alghamdi, M.M., Naggar, A.M.A.El, A review on heterogeneous photocatalytic materials: mechanism, perspectives, and environmental and energy sustainability applications. Inorg. Chem. Commun., 163, 2024, 112307.
- Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Hirouchi, Y., Anpo, M., Bahnemann, D.W., Understanding TiO2photocatalysis: mechanisms and materials. Chem. Rev. 114 (2014), 9919–9986.
- Ochiai, T., Fujishima, A., Photoelectrochemical properties of TiO2photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C. 13 (2012), 247–262.
- Peiris, S., de Silva, H.B., Ranasinghe, K.N., Bandara, S.V., Perera, I.R., Recent development and future prospects of TiO2photocatalysis. J. Chin. Chem. Soc. 68 (2021), 738–769.
- Kumar, A., Choudhary, P., Kumar, A., Camargo, P.H.C., Krishnan, V., Recent advances in plasmonic photocatalysis based on TiO2and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small, 18, 2022, 2101638.
- El-Zohry, A.M., Kloo, L., He, L., Understanding charge dynamics in TiO2using ultrafast mid-infrared spectroscopy: trapping versus recombination. J. Phys. Chem. C. 128 (2024), 4192–4199.
- Meng, A., Zhang, L., Cheng, B., Yu, J., Dual cocatalysts in TiO2photocatalysis. Adv. Mater., 31, 2019, 1807660.
- Zhao, Y., Shu, Y., Linghu, X., Liu, W., Di, M., Zhang, C., Shan, D., Yi, R., Wang, B., Modification engineering of TiO2-based nanoheterojunction photocatalysts. Chemosphere, 346, 2024, 140595.
- Wu, S.-M., Wu, L., Denisov, N., Badura, Z., Zoppellaro, G., Yang, X.-Y., Schmuki, P., Pt Single atoms on TiO2can catalyze water oxidation in photoelectrochemical experiments. J. Am. Chem. Soc. 146 (2024), 16363–16368.
- Herrera-Beurnio, M.C., López-Tenllado, F.J., Hidalgo-Carrillo, J., Martín-Gómez, J., Estévez, R., Castillo-Rodríguez, M., de Miguel, G., Urbano, F., Marinas, A., Controlled photodeposition of Pt onto TiO2-g-C3N4systems for photocatalytic hydrogen production. Cat. Today 413415, 2023, 113967.
- Sharifi, T., Mohammadi, T., Momeni, M.M., Kusic, H., Rokovic, M.K., Bozic, A.L., Ghayeb, Y., Influence of photo-deposited Pt and Pd onto chromium doped TiO2nanotubes in photo-electrochemical water splitting for hydrogen generation. Catalysts, 11, 2021, 212.
- Zhang, H., Sun, P., Fei, X., Wu, X., Huang, Z., Zhong, W., Gong, Q., Zheng, Y., Zhang, Q., Xie, S., Fu, G., Wang, Y., Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane. Nat. Commun., 15, 2024, 4453.
- Yang, D., Liu, X., Ning, F., Wang, H., Pan, L., Wang, S., Zhang, L., Yin, Z., Tang, N., Au@Pt decorated polyaniline/TiO2with synergy of p-n heterojunction and surface plasmon resonance for boosted photoelectrochemical water splitting. Int. J. Hydrog. Energy 82 (2024), 1413–1421.
- Melvin, A., Illath, K., Das, T., Raja, T., Bhattacharyya, S., Gopinath, C., M–Au/TiO2(M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces. Nanoscale 7 (2015), 13477–13488.
- Momeni, M.M., Zeinali, P., Photochemical deposition of Ag, Cu, Cu@Ag, and Ag@Cu on TiO2nanotubes and their optical properties and photoelectrochemical activity. J. Electron. Mater. 50 (2021), 5810–5818.
- Peerakiatkhajohn, P., Yun, J.-H., Butburee, T., Nisspa, W., Thaweesak, S., Surface plasmon-driven photoelectrochemical water splitting of a Ag/TiO2nanoplate photoanode. RSC Adv. 12 (2022), 2652–2661.
- Li, Y., Wang, C., Song, M., Li, D., Zhang, X., Liu, Y., TiO2-x/CoOxphotocatalyst sparkles in photothermocatalytic reduction of CO2with H2O steam. Appl. Catal. B Environ. 243 (2019), 760–770.
- do Couto-Pessanha, E., Paiva, V.M., Mori, T.J.A., Soler, L., Canabaro, B., Jardim, P., D'Elia, E., Llorca, J., Maronkovic, B.A., Mechanochemical approach towards optimized Ni2+spin configuration in NiO/TiO2heterojunction with enhanced solar-driven H2photoproduction. Int. J. Hydrog. Energy 80 (2024), 528–541.
- Xiao, J., Chen, C., Chen, S., Liu, H., Peng, T., Insight into the significantly enhanced photocatalytic CO2reduction performance of Pt/MnOxdual cocatalysts on sea-urchin-like anatase TiO2microspheres. Chem. Eng. J., 425, 2021, 131627.
- Lei, L., Sang, L., Gao, Y., Pulse electrodeposition of Ag, Cu nanoparticles on TiO2nanoring/nanotube arrays for enhanced photoelectrochemical water splitting. Adv. Powder Technol., 33, 2022, 103511.
- Ohno, T., Sarukawa, K., Matsumura, M., Crystal faces of rutile and anatase TiO2particles and their roles in photocatalytic reactions. N. J. Chem. 26 (2002), 1167–1170.
- Butburee, T., Kotchasarn, P., Hirunsit, P., Sun, Z., Tang, Q., Khemthong, P., Sangkhun, W., Thongsuwan, W., Kumnorkaew, P., Wang, H., Faungnawakij, K., New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. J. Mater. Chem. A 7 (2019), 8156–8166.
- Okazaki, M., Suganami, Y., Hirayama, N., Nakata, H., Oshikiri, T., Yokoi, T., Misawa, H., Maeda, K., Site-selective deposition of a cobalt cocatalyst onto a plasmonic Au/TiO2photoanode for improved water oxidation. ACS Appl. Energy Mater. 3 (2020), 5142–5146.
- B. Stefanov, 2020, Photocatalytic reactor for in situ determination of supported catalysts activity in liquid-phase based on 3D-printed components and Arduino. In Proceedings of the 2020 XXIX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 16–18 September, doi: 10.1109/ET50336.2020.9238334.
- Swanepoel, R., Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum., 16, 1983, 1214.
- Kubinyi, M., Benkö, N., Grofcsik, A., Jones, W.Jeremy, Determination of the thickness and optical constants of thin films from transmission spectra. Thin Solid Films 286 (1996), 164–169.
- Jolivet, A., Labbé, C., Frilay, C., Debieu, O., Marie, P., Horcholle, B., Lemarié, F., Portier, X., Grygiel, C., Duprey, S., Jadwisienczak, W., Ingram, D., Upadhyay, M., David, A., Fouchet, A., Lüders, U., Cardin, J., Structural, optical, and electrical properties of TiO2thin films deposited by ALD: impact of the substrate, the deposited thickness and the deposition temperature. Appl. Surf. Sci., 608, 2023, 155214.
- Polyanskiy, M.N., Refractiveindex.info database of optical constants. Sci. Data, 11, 2024, 94.
- Tian, F., Zhang, Y., Zhang, J., Pan, C., Raman spectroscopy: a new approach to measure the percentage of anatase TiO2exposed (001) facets. J. Phys. Chem. C. 116 (2012), 7515–7519.
- Stefanov, B.I., Kolev, H.G., MnOxand Pd surface functionalization of TiO2thin films via photodeposition UV dose control. Photochem 4 (2024), 474–487.
- Liao, X., Zheng, L., He, Q., Li, G., Zheng, L., Li, H., Tian, T., Fabrication of Ag/TiO2membrane on Ti substrate with integral structure for catalytic reduction of 4-nitrophenol. Process Saf. Environ. Prot. 168 (2022), 792–799.
- Kaneva, N., Bojinova, A., Mladenova, R., Kolev, H., Stefanov, B., Synthesis of Ag-modified TiO2sol-gel films and its application as photocatalysts for methylene blue degradation. J. Chem. Technol. Metall. 59 (2024), 569–574.
- Kosmulski, M., The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 99 (2002), 255–264.
- Toukabri, K., Hejazi, S., Shahsanaei, M., Pour-Ali, S., Kosari, A., Butz, B., Killian, M., Mohajernia, S., Spontaneous deposition of single platinum atoms on anatase TiO2for photocatalytic H2evolution. Langmuir 40 (2024), 4661–4668.
- Dai, W., Wang, X., Liu, P., Xu, Y., Li, G., Fu, X., Effects of electron transfer between TiO2films and conducting substrates on the photocatalytic oxidation of organic pollutants. J. Phys. Chem. B 110 (2006), 13470–13476.
- Zheng, J., Yu, H., Li, X., Zhang, S., Enhanced photocatalytic activity of TiO2nano-structured thin film with a silver hierarchical configuration. Appl. Surf. Sci. 254 (2008), 1630–1635.
- Katsiaounis, S., Panidi, J., Koutselas, I., Topoglidis, E., Fully reversible electrically induced photochromic-like behaviour of Ag:TiO2thin films. Coatings, 10, 2020, 130.
- Sakai, N., Ebina, Y., Takada, K., Sasaki, T., Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 126 (2004), 5851–5858.
- Bermudez, S., Castañeda, L., Salazar, L., Sánchez-Saénz, C., Carmona, D., Photoelectrochemical methods for flat band potential estimation: case studies of ZnO nanorods and TiO2compact films. J. Electrochem. Soc., 169, 2022, 096513.
- Beranek, R., Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem., 2011, 2011, 786759.
- Hankin, A., Bedoya-Lora, F., Alexander, J., Regoutz, A., Kelsall, G., Flat band potential determination: avoiding the pitfalls. J. Mater. Chem. A 7 (2019), 26162–26176.
- Lee, S., Jimenez-Relinque, E., Martinez, I., Castellote, M., Effects of mott–schottky frequency selection and other controlling factors on flat-band potential and band-edge position determination of TiO2. Catalysts, 13, 2023, 1000.
- van de Krol, R., Goossens, A., Schoonman, J., Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2. J. Electrochem. Soc., 144, 1997, 1723.
- Syrek, K., Czopor, J., Topa-Skwarczyńska, M., Pilch, M., Kamiński, K., Ortyl, J., Sulka, G.D., Photoelectrochemical properties of BODIPY-sensitized anodic TiO2layers decorated with AuNPs for enhanced solar performance. J. Phys. Chem. C. 127 (2023), 9471–9480.
- Wierzbicka, E., Schultz, T., Syrek, K., Sulka, G.D., Koch, N., Pinna, N., Ultra-stable self-standing Au nanowires/TiO2nanoporous membrane system for high-performance photoelectrochemical water splitting cells. Mater. Horiz., 9, 2022, 2797.
- Hanzu, I., Djenizian, T., Knauth, P., Electrical and point defect properties of TiO2nanotubes fabricated by electrochemical anodization. J. Phys. Chem. C. 115 (2011), 5989–5996.
- Behnami Far, V., Jafarzadeh, K., Shooshtari Gugtapeh, H., Mirali, S.M., A study on electrical properties of thermally grown TiO2film at the interface of Ti/RuO2–IrO2–TiO2anode using Mott-Schottky and electrochemical impedance spectroscopy techniques. Mater. Chem. Phys., 256, 2020, 123756.
- Xie, J., Wang, S., Lu, T., Yang, S., Zou, L., Ren, J., Lu, X., Huang, J., Huang, C., Yang, P., Evaluating high temperature photoelectrocatalysis of TiO2model photoanode. J. Colloid Interface Sci. 645 (2023), 765–774.
- Mahmood, A., Tezcan, F., Kardaş, G., Molybdenum disulfide as the interfacial layer in the CuO–TiO2photocathode for photoelectrochemical cells. J. Mater. Sci. Mater. Electron. 28 (2017), 12937–12943.
- Mills, A., Wang, J., Ollis, D.F., Kinetics of liquid phase semiconductor photoassisted reactions: supporting observations for a pseudo-steady-state model. J. Phys. Chem. B 110 (2006), 14386–14390.
- Ollis, D.F., Kinetics of photocatalyzed reactions: five lessons learned. Front. Chem., 6, 2018, 378.
- Cao, F., Oskam, G., Meyer, G.J., Searson, P.C., Electron transport in porous nanocrystalline TiO2photoelectrochemical cells. J. Phys. Chem. 100 (1996), 17021–17027.
Issue
| Catalysis Today, vol. 459, pp. 115447, 2025, Netherlands, https://doi.org/10.1016/j.cattod.2025.115447 |
Copyright Elsevier B.V. |