Autors: Sapundzhi F., Dimitrova V., Lazarova, M. D., Georgiev S., Todorov M., Todorov V.
Title: A Cloud-Based Approach to Modeling ERP Information Flows Using a Bivariate Pólya–Aeppli Process
Keywords: cloud computing, electronic process management, enterprise resource planning, industrial systems, SAP system, stochastic processes

Abstract: Fast-growing technology and the development of IT services give the idea of founding a new application of stochastic processes and their properties. We give a new connection between electronic process management and a stochastic process named the bivariate Pólya–Aeppli counting process. This process is applied as a counting process in the mathematical construction of the given model and it has been introduced as a counting process in electronic process management. In our current study, we assume a company that has two locations in two countries—Bulgaria and Romania. For seamless communication and data sharing, the integrated factories leverage the System Applications and Products in Data Processing (SAP) system. By combining these functions into one structure, we optimize coordination, streamline operations, and improve the company’s productivity and profitability. The automated tools within the system facilitate uninterrupted production and secure supply chains and thus the decision making is improved. A key benefit of these tools is to boost production and procurement activities for success in today’s competitive market which results in cost savings, will increase visibility, and also will improve rapid decision making.

References

  1. Shehab E.M. Sharp M.W. Supramaniam L. Spedding T.A. Enterprise resource planning: An integrative review Bus. Process Manag. J. 2004 10 359 386 10.1108/14637150410548056
  2. O’Connor J.T. Dodd S.C. Achieving integration on capital with enterpriseresource-planning systems Autom. Constr. 2000 9 515 524 10.1016/S0926-5805(00)00062-5
  3. O’Leary D.E. Enterprise Resource-Planning Systems: Systems, Life Cycle, Electronic Commerce, and Risk Cambridge University Press Cambridge, UK 2000 10.1017/CBO9780511805936
  4. Jawad Z.N. Villányi B. Designing Predictive Analytics Frameworks for Supply Chain Quality Management: A Machine Learning Approach to Defect Rate Optimization Platforms 2025 3 6 10.3390/platforms3020006
  5. Katuu S. Enterprise Resource Planning: Past, Present, and Future New Rev. Inf. Netw. 2020 25 37 46 10.1080/13614576.2020.1742770
  6. Parr A. Shanks G. A model of ERP project implementation J. Inf. Technol. 2000 15 289 303 10.1177/026839620001500405
  7. Dumitriu D. Popescu M.A. Enterprise architecture framework design in IT management Procedia Manuf. 2020 46 932 940 10.1016/j.promfg.2020.05.011
  8. Biagi V. Russo A. Data Model Design to Support Data-Driven IT Governance Implementation Technologies 2022 10 106 10.3390/technologies10050106
  9. Rao S.S. Enterprise resource planning: Business needs and technologies Ind. Manag. Data Syst. 2000 100 81 88 10.1108/02635570010286078
  10. Gaol F.L. Deniansyah M.F. Matsuo T. The measurement impact of ERP system implementation on the automotive industry business process efficiency Int. J. Bus. Inf. Syst. 2023 43 429 442 10.1504/IJBIS.2023.132124
  11. Stergiou C.L. Psannis K.E. Digital twin intelligent system for industrial internet of things-based big data management and analysis in cloud environments Virtual Real. Intell. Hardw. 2022 4 279 291 10.1016/j.vrih.2022.05.003
  12. Chehri A. Zimmermann A. Schmidt R. Masuda Y. Theory and Practice of Implementing a Successful Enterprise IoT Strategy in the Industry 4.0 Era Procedia Comput. Sci. 2021 192 4609 4618 10.1016/j.procs.2021.09.239
  13. Chen J. Gusikhin O. Finkenstaedt W. Liu Y.N. Maintenance, Repair, and Operations Parts Inventory Management in the Era of Industry 4.0 IFAC-PapersOnLine 2019 52 171 176 10.1016/j.ifacol.2019.11.171
  14. Jawad Z.N. Balázs V. Machine learning-driven optimization of enterprise resource planning (ERP) systems: A comprehensive review Beni-Suef Univ. J. Basic Appl. Sci. 2024 13 4 10.1186/s43088-023-00460-y
  15. Tortorella G. Fogliatto F.S. Gao S. Chan T.K. Food supply chain resilience through digital transformation: A mixed-method approach Int. J. Logist. Manag. 2021 33 547 556 10.1108/IJLM-12-2020-0494
  16. Perez-Vega R. Hopkinson P. Singhal A. Mariani M.M. From CRM to social CRM: A bibliometric review and research agenda for consumer research J. Bus. Res. 2022 151 1 16 10.1016/j.jbusres.2022.06.028
  17. Chatterjee S. Chaudhuri R. Vrontis D. Jabeen F. Digital transformation of organization using AI-CRM: From microfoundational perspective with leadership support J. Bus. Res. 2022 153 46 58 10.1016/j.jbusres.2022.08.019
  18. El Hail C. El Koraichi M. Enhancing Supply Chain Management PerformanceThrough E-CRM Implementation Int. J. Supply Chain Manag. 2024 12 56 64 10.59160/ijscm.v13i4.6249
  19. Sologia F.E. Witjaksono R.W. Ramadani L. Evaluation of the Successful Implementation of EnterpriseResource Planning Based on SAP Using the DeLone & McLeanModel Int. J. Community Serv. Learn. 2024 8 29 40 10.23887/ijcsl.v8i1.75780
  20. Antwi B.O. Avickson E.K. Integrating SAP, AI, And Data Analytics for Advanced Enterprise Management Int. J. Res. Publ. Rev. 2024 5 621 636 10.55248/gengpi.5.1024.2722
  21. Al-Banna A. Rana Z.A. Yaqot M. Menezes B. Interconnectedness between Supply Chain Resilience, Industry 4.0, and Investment Logistics 2023 7 50 10.3390/logistics7030050
  22. Tarigan Z.J.H. Siagian H. Jie F. Impact of Enhanced Enterprise Resource Planning (ERP) on Firm Performance through Green Supply Chain Management Sustainability 2021 13 4358 10.3390/su13084358
  23. SAP S/4HANA Available online: https://www.leanix.net/en/wiki/tech-transformation/sap-ecc-vs-hana-vs-r3-vs-s4hana (accessed on 6 March 2025)
  24. Bavaraju A. SAP Fiori Implementation and Development SAP Press Walldorf, Germany 2016
  25. Steckenborn T. Schnelleinstieg SAP Business Technology Platform (BTP)–Services und Integration Espresso Tutorials GmbH Gleichen, Germany 2022
  26. Bögelsack A. Bögelsack A. Chakraborty U. Kumar D. SAP S/4HANA Systems in Hyperscaler Clouds. Deploying SAP S/4HANA in AWS, Google Cloud, and Azure Springer Berlin/Heidelberg, Germany 2022
  27. Bagga J. A Practical Guide to SAP Integration Suite Springer Books Berlin/Heidelberg, Germany 2023
  28. Brinkkemper S. Dynamic Enterprise Innovation: Establishing Continuous Improvement in Business van Es R. Baan Business Innovation Barneveld, The Netherlands 1998
  29. Wang M. Integrating SAP to Information Systems Curriculum: Design and Delivery Inf. Syst. Educ. J. 2011 9 97 104
  30. Brinkkemper S. Pachidi S. Functional architecture modeling for the software product industry European Conference on Software Architecture Springer Berlin/Heidelberg, Germany 2010 198 213
  31. Plattner H. Leukert B. The In-Memory Revolution: How SAP HANA Enables Business of the Future Springer Berlin/Heidelberg, Germany 2015
  32. Singh V. Manage Your SAP Projects with SAP Activate: Implementing SAP S/4HANA Packt Publishing Ltd. Birmingham, UK 2017
  33. Keijzer F. SAP S/4HANA Embedded Analytics Apress New York, NY, USA 2021 10.1007/978-1-4842-7017-2
  34. Sharma C. Financial advantages of leveraging SAP S/4HANA integration in retail: A quantitative study World J. Adv. Eng. Technol. Sci. 2021 1 98 113 10.30574/wjaets.2021.1.2.0034
  35. SAP S/4 HANA Modules Available online: https://www.erpresearch.com/en-us/sap-s/4-hana-modules (accessed on 6 March 2025)
  36. Lazarova M. Sapundzhi F. Stochastic Modeling with Applications in Supply Chain Management and ICT Systems Computation 2023 11 21 10.3390/computation11020021
  37. Lazarova M. Minkova L. A risk model with a bivariate Polya-Aeppli counting process AIP Conf. Proceeding 2022 2505 100003 10.1063/5.0100711
  38. Minkova L.D. The Polya-Aeppli process and ruin problems J. Appl. Math. Stoch. Anal. 2004 3 221 234 10.1155/S1048953304309032
  39. Chukova S. Minkova L.D. Characterization of the Polya-Aeppli process Stoch. Anal. Appl. 2013 31 590 599 10.1080/07362994.2013.798994
  40. Minkova L.D. Balakrishnan N. On a bivariate Pólya-Aeppli distribution Commun. Stat.-Theory Methods 2014 43 5026 5038 10.1080/03610926.2012.709906
  41. T-distributed Stochastic Neighbour Embedding Available online: https://help.sap.com/docs/SAP_HANA_PLATFORM/319d36de4fd64ac3afbf91b1fb3ce8de/t-distributed-stochastic-neighbour-embedding-3de9095.html (accessed on 6 March 2025)
  42. Lazarova M.D. Sapundzhi F.I. Stochastic processes with applications in supply chain management of electronic industry. In Proceedings of the International Conference on Statistics and Machine Learning in Electronics, Sofia, Bulgaria, 12–13 May 2022 Complex Control. Syst. 2022 4 41 45 Available online: http://ir.bas.bg/ccs/2022/9_lazarova.pdf (accessed on 6 March 2025)
  43. Lazarova M.D. Minkova L.D. Non-central Polya-Aeppli process and ruin probability Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019 11 312 321
  44. Minkova L.D. A Generalization of the Classical Discrete Distributions Commun. Statist. Theory Methods 2002 31 871 888.1 10.1081/STA-120004187
  45. SAP S/4HANA Cloud Available online: https://www.sap.com/products/erp.html (accessed on 6 March 2025)
  46. SAP Business Configuration Available online: https://help.sap.com/docs/btp/sap-business-technology-platform/fiori-apps-business-configuration (accessed on 6 March 2025)

Issue

Mathematics, vol. 13, pp. 20, 2025, Switzerland, https://doi.org/10.3390/math13111699

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science