Autors: Krol O., Sokolov V., Zhilevski, M. M., Mikhov, M. R.
Title: DEVELOPMENT AND INNOVATIVE SOLUTION FOR WORM DRIVE OF MACHINE TOOL ROTARY TABLE
Keywords: 3D modeling, Efficiency, Feed drive, Machining center, Worm-ball transmission

Abstract: The article considers the modernized design of the machining center rotary table based on a new design solution for the worm-ball drive. The layout scheme of the horizontal machining center and the kinematics of the feed drive for implementing 4-axis machining are proposed. A draft design of the feed drive with a specialized spindle support bearing is developed. A 3D rotary table project is created in the Creo Parametric CAD environment using parallel design tools. In the process of 3D modeling, a multi-variant approach to the design is used, including an alternative version of the worm drive with backlash-free engagement. When constructing a circular array of worm threads, the effective functionality of Creo is used, associated with a circular shape with the ability to redefine the array. An innovative design of the worm transmission is proposed as a synthesis of a worm and ball screw gear. The main idea of the new worm-ball transmission is to find such design solutions that allow replacing the contact mechanism with sliding friction (the main problem of the classical engagement) with a rolling friction mechanism. For the new transmission, 2D and 3D sketches and models are developed and its declarative patent has been received. Analytical dependencies for calculating the main geometric parameters are given. A comprehensive calculation of the drive transmission was carried out in a specialized module ARM Trans. As a result of the numerical experiment, the effectiveness of the new design solution according to the efficiency criterion is shown.

References

  1. Liang, S., & Shih, A. (2016). Analysis of machining and machining tools. Springer, New York https://doi.org/10.1007/978-1-4899-7645-1
  2. Manik, D.N. (2024). Basics of Mechanisms. In: Fundamentals of Mechanisms and Machines. Springer, Singapore. https://doi.org/10.1007/978-981-97-1810-8_1
  3. Bass, D., Riedl, R., & Slagle, N. (2016). 4th and 5th Axis Rotary Table. California Polytechnic State University, San Luis Obispo.
  4. Gilbert, R.W., & Quick, N.J. (1986). Automatic Rotary Table Assembly Machines — Prediction Techniques for Output Rates and Efficiency Levels. In P.F. McGoldrick (Eds.), Technology Advances in Manufacturing (pp. 125–132). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1355-17
  5. Dassanayake, M., & Tsutsumi, M. (2009). High performance rotary table for machine tool applications. International Journal of Automation Technology, 1, 343–347.
  6. Mauro G. (1996) Anti-Backlach Mechanism for a Rotary Stage. US Patent 6,016,716A, 18 Jun 1996.
  7. Maitra, G.: Handbook of gear design. McGraw-Hill PCL, New Delhi (2001).
  8. Zamriy, A.A. (2007). Practical training course CAD/CAE APM WinMachine. Publishing House of APM.
  9. Magyar, B., & Sauer, B. (2015). Calculation of the efficiency of worm gear drives. Power Transmission Engineering, 52-56. https://doi.org/10.1533/9781782421955.15
  10. Bjionowski, B. (2015). A practical approach for modeling a bevel gear. Geartechnology 2015 March/April.
  11. Chan, TC., Wu, SC., Ullah, A. et al. (2024). Integrating numerical techniques and predictive diagnosis for precision enhancement in roller cam rotary table. Int J Adv Manuf Technol, 132, 3427–3445. https://doi.org/10.1007/s00170-024-13584-x
  12. MK200 Rotary table-the start of an upgraded standard series to suit your machine (2019) Kitagawa Europe, 4th April
  13. Brecher, C., Fey, M., & Daniels, M. (2016). Modeling of Position-, Tool-and Workpiece-Dependent Milling Machine Dynamics. High Speed Mach., 2, 15–25. https://doi.org/10.1515/hsm-2016-0003
  14. Manoj, K., Kar, B., Agrawal, R., Manupati, V.K., & Machado J. (2022). Cycle Time Reduction in CNC Turning Process Using Six Sigma Methodology – A Manufacturing Case Study. In: J. Machado, F. Soares, J. Trojanowska, & E. Ottaviano (Eds.), Innovations in Mechanical Engineering. icieng 2021, LNME (pp. 135–146). Springer, Cham. https://doi.org/10.1007/978-3-030-79165-0_13
  15. Ciobanu, R, Donţu, O., Besnea, D., Cuta, A.N., Doina, C. & Nachila, C. (2014). 3D CAD/CAM and rapid prototyping applied for malta cross mechanism fabrication. Romanian Review Precision Mechanics, Optics and Mechatronics, 46, 67–70.
  16. Basova, Y., Dobrotvorskiy, S., Balog, M., Iakovets, A., Amine, C.M., & Zinchenko, A. (2023). Increasing SME Supply Chain Resilience in the Face of Rapidly Changing Demand with 3D Model Visualisation. International Journal of Mechatronics and Applied Mechanics, 14, 35–47. https://doi.org/10.17683/ijomam/issue14.5
  17. Mautner, E-M., Sigmund, W., Stemplinger, J-P., & Stahl, K. (2016). Efficiency of worm gearboxes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(16), 2952–2956. https://doi.org/10.1177/0954406215602286
  18. Halchuk, T.N., Povstyanoy, O.Y., Bembenek, M., Valetskyi. B.P., Polinkevych, R.M., & Smetjukh, B.V. (2025). An impact of technological factors on the kinematic accuracy of cylindrical gear wheels during machining. Journal of Engineering Sciences (Ukraine): Vol. 12(1), (pp. B11–B18). https://doi.org/10.21272/jes.2025.12(1).b2
  19. Prodan, D., Bucuresteanu, A., Dobrescu, T., & Motomancea, A. (2016). Rotary Tables for Machine Tools. Applied Mechanics and Materials, 841, 168–172. https://doi.org/10.4028/www.scientific.net/amm.841.168
  20. Shelofast, V.V., & Chugunova, T.B. (2004). Fundamentals of machine design. Examples of solving problems. Publishing House of APM.
  21. Hashim, A., Grămescu, B., & Cartal, A. (2020). Modeling and identification of a high resolution servo, for mobile robotics. UPB Scientific Bulletin, Series D: Mechanical Engineering: Vol. 82(2) (pp. 27–38).
  22. Shevchenko, S., Mukhovaty, A., & Krol, O. (2021). Modification of Two-Stage Coaxial Gearbox. In: A.A. Radionov, & V.R. Gasiyarov, (Eds.) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) (pp. 28–35). Springer, Cham. https://doi.org/10.1007/978-3-030-54814-8_4
  23. Mikhov, M., & Zhilevski, M. (2019). Study and Performance Improvement of the Drive Systems for a Class of Machine Tools. Proceedings of the 14th International Conference on Modern Technologies in Manufacturing (MTeM 2019), Cluj-Napoca, Romania, MATEC Web of Conferences, Vol. 299, (pp. 1-6). https://doi.org/10.1051/matecconf/201929905003.
  24. Zhilevski, M., & Mikhov, M. (2022). Analysis of Mechanical Operations in a Type of Machining Centers. Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, IEEE Xplore. (pp. 1240-1244). DOI: 10.1109/HORA55278.2022.9800103
  25. Sokolov, V. (2021). Hydrodynamics of Flow in a Flat Slot with Boundary Change of Viscosity. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering: Vol. 2 (pp. 1172– 1181). Springer, Cham. https://doi.org/10.1007/978-3-030-54817-9_136
  26. Sokolov, V. (2021). Increased Measurement Accuracy of Average Velocity for Turbulent Flows in Channels of Ventilation Systems. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering: Vol. 2 (pp. 1182– 1190). Springer, Cham. https://doi.org/10.1007/978-3-030-54817-9_137
  27. Wyndorps, P. (2022). 3D-Konstruktion mit Creo Parametric und Windchill: PTC Creo 4.0 und PTC Windchill, Europa-Lehrmittel (in German).
  28. Shin, R.H. (2020). Parametric Modeling with Creo Parametric 7.0. SDC Publisher.
  29. Yakovenko, I., Permyakov, A., Dobrotvorskiy, S., Basova Y., Kotliar, A., & Zinchenko, A. (2023). Prospects for the development of process equipment in aggregate-modular design for sustainable mechanical engineering. International Journal of Mechatronics and Applied Mechanics: Issue 13, (pp. 145–156). https://dx.doi.org/10.17683/ijomam/issue13.18
  30. Sulym, А.О., Fomin, O.V., Khozia, P.О., & Mastepan, A.G. (2018). Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 79–87. https://doi.org/10.29202/nvngu/2018-5/8
  31. Krol, O. (2021). Modeling of Worm Gear Design with Non-clearance Engagement. In: A.A. Radionov, & V.R. Gasiyarov (Eds.) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). LNME (pp. 36–46). Springer, Cham. https://doi.org/10.1007/978-3-030-54814-8_5
  32. Litvin, F.(1989). Theory of Gearing, Tech. rep. University of Illinois, Chicago.
  33. Shevchenko, S., Krol, O., & Khmelnitsky, A. (2016). Worm ball transmission. UA Patent Application 104423, 25 January 2016.

Issue

International Journal of Mechatronics and Applied Mechanics, vol. 1, pp. 8-18, 2025, Romania, https://doi.org/10.17683/ijomam/issue20.1

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus