Autors: Gavrailov, D. I., Boycheva, S. V. Title: Comparative Studies of Three-Dimensional Complex Flow Field Designs in a Proton Exchange Membrane Hydrogen Fuel Cell Keywords: channel configuration, COMSOL Multiphysics, flow field design, gas distribution in fuel cellsAbstract: The performance and durability of proton-exchange membrane fuel cells (PEMFCs) are dependent on fuel flow, humidifying water, and outgoing water management. Unlike conventional flow fields with linear channels, the complex 3D flow field—featuring repeating baffles along the channel, known as the baffle design—induces a micro-scale interface flux between the gas diffusion layer (GDL) and the flow fields. Thus, an intensive oxygen flow is created that removes excess water from the GDL, thereby improving the fuel cell efficiency. Another approach for channel design is the Turing flow field, which resembles the organization of fluid flows in natural objects such as leaves, lungs, and the blood system. This design enhances the distribution of inlet flow significantly compared with traditional designs. The present study aims to combine the advantages of both Turing and baffle flow field designs and to provide model investigations on the influence of the mixed flow field design on the efficiency of PEMFCs. It was established that the mixed design achieves the highest electrode current density of 1.2 A/cm2, outperforming the other designs. Specifically, it achieves 20% improvement over the Turing design, reaching 1.0 A/cm2 and generating three times more current than the baffle design, which delivers 0.4 A/cm2. In contrast, the conventional serpentine designs exhibit the lowest current density. The mixed flow field design provides better oxygen utilization in the electrochemical reaction, offers optimal membrane hydration, and contributes to superior electrode current density performance. These data illustrate how flow field structure directly impacts fuel cell efficiency through enhancement of current density. References - Jamal T. Shafiullah G.M. Dawood F. Kaur A. Arif M.T. Pugazhendhi R. Elavarasan R.M. Ahmed S.F. Fuelling the future: An in-depth review of recent trends, challenges and opportunities of hydrogen fuel cell for a sustainable hydrogen economy Energy Rep. 2023 10 2103 2127 10.1016/j.egyr.2023.09.011
- Hassan Q. Algburi S. Sameen A.Z. Salman H.M. Jaszczur M. Green hydrogen: A pathway to a sustainable energy future Int. J. Hydrogen Energy 2024 50 310 333 10.1016/j.ijhydene.2023.08.321
- Bhuiyan M.M.H. Siddique Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation Int. J. Hydrogen Energy 2025 102 1026 1044 10.1016/j.ijhydene.2025.01.033
- Sharaf O.Z. Orhan M.F. An overview of fuel cell technology: Fundamentals and applications Renew. Sustain. Energy Rev. 2014 32 810 853 10.1016/j.rser.2014.01.012
- Tong C. Hydrogen and Fuel Cells Introduction to Materials for Advanced Energy Systems Springer Cham, Switzerland 2019 587 653
- Sebbani I. Ettouhami M.K. Boulakhbar M. Fuel cells: A technical, environmental, and economic outlook Clean. Energy Syst. 2025 10 100168 10.1016/j.cles.2024.100168
- Tellez-Cruz M.M. Escorihuela J. Solorza-Feria O. Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges Polymers 2021 13 3064 10.3390/polym13183064
- Qasem N.A.A. A recent overview of proton exchange membrane fuel cells: Fundamentals, applications, and advances Appl. Therm. Eng. 2024 252 123746 10.1016/j.applthermaleng.2024.123746
- Fan L. Tu Z. Chan S.H. Recent development of hydrogen and fuel cell technologies: A review Energy Rep. 2021 7 8421 8446 10.1016/j.egyr.2021.08.003
- Pourrahmani H. Yavarinasab A. Siavashi M. Matian M. Van Herle J. Progress in the proton exchange membrane fuel cells (PEMFCs) water/thermal management: From theory to the current challenges and real-time fault diagnosis methods Energy Rev. 2022 1 100002 10.1016/j.enrev.2022.100002
- Liu Z. Cai S. Tu Z. Chan S.H. Recent development in degradation mechanisms of proton exchange membrane fuel cells for vehicle applications: Problems, progress, and perspectives Energy Storage Sav. 2024 3 106 152 10.1016/j.enss.2024.02.005
- Spreafico C. Thonemann N. Prospective life cycle assessment of proton exchange membrane fuel cell. Comparing data from patents and papers Int. J. Hydrogen Energy 2025 99 45 52 10.1016/j.ijhydene.2024.12.211
- Al-okbi Y. Jweeg M.J. Atiya M.A. Al-Dujele R. Design, analysis and development of a proton exchange membrane in fuel cell J. Eng. Res. 2024 in press 10.1016/j.jer.2024.07.019
- AhmadS S. Nawaz T. Ali A. Orhan M.F. Samreen A. Kannan A.M. An overview of proton exchange membranes for fuel cells: Materials and manufacturing Int. J. Hydrogen Energy 2022 47 19086 19131 10.1016/j.ijhydene.2022.04.099
- Petrillo A. Powering Clean Energy Solutions Generative Design Puts Hydrogen Fuel Cell Development in High Gear COMSOL Multiphysics eBook Toyota Research Institute of North America Ann Arbor, MI, USA 2023
- Jiao K. Li X. Water transport in polymer electrolyte membrane fuel cells Prog. Energy Combust. Sci. 2011 37 221 291 10.1016/j.pecs.2010.06.002
- Li X. Sabir I. Review of bipolar plates in PEM fuel cells: Flow-field designs Int. J. Hydrogen Energy 2005 30 359 371 10.1016/j.ijhydene.2004.09.019
- Thitakamol V. Therdthianwong A. Therdthianwong S. Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells Int. J. Hydrogen Energy 2011 36 3614 3622 10.1016/j.ijhydene.2010.12.060
- Wang J. Theory and practice of flow field designs for fuel cell scaling-up: A critical review Appl. Energy 2015 157 640 663 10.1016/j.apenergy.2015.01.032
- Jithesh P. Bansode A. Sundararajan T. Das S.K. The effect of flow distributors on the liquid water distribution and performance of a PEM fuel cell Int. J. Hydrogen Energy 2012 37 17158 17171 10.1016/j.ijhydene.2012.08.058
- Weng W.C. Li H.Y. Kuo J.K. Yan W.M. Transient response of proton exchange membrane fuel cell with serpentine flow field Proceedings of the IEEE 3rd International Conference on Communication Software and Networks Xi’an, China 27–29 May 2011 224 229
- Guo N. Leu M. Koylu U. Optimization of Parallel and Serpentine Configurations for Polymer Electrolyte Membrane Fuel Cells Fuel Cells 2014 14 876 885 10.1002/fuce.201400127
- Wang Y. Liao X. Liu G. Xu H. Guan C. Wang H. Li H. He W. Qin Y. Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells Energies 2023 16 4207 10.3390/en16104207
- Laboto J. Canizares P. Rodrigo M.A. Pinar J. Mena E. Ubeda D. Three-dimensional model of a 50 cm2high temperature PEM fuel cell. Study of the flow channel geometry influence Int. J. Hydrogen Energy 2010 35 5510 5520 10.1016/j.ijhydene.2010.02.089
- Um S. Wang C. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cell J. Power Sources 2004 125 40 51 10.1016/j.jpowsour.2003.07.007
- Iranzo A. Salva A. Rosa F. Fluid Flow in Polymer Electrolyte Membrane Fuel Cells Fluid Dynamics, Computational Modeling and Applications InTech London, UK 2012 10.5772/26628
- You L. Liu H. A two-phase flow and transport model for the cathode of PEM fuel cells Int. J. Heat Mass Transf. 2002 45 2277 2287 10.1016/S0017-9310(01)00322-2
- Wei Y. Feng Y. Zhao J. Li J. Li H. Tan J. Numerical Investigation of Proton Exchange Membrane Fuel Cells with Symmetrical Serpentine Channels Equipped with Baffles ACS Omega 2025 10 1510 1518 10.1021/acsomega.4c09174
- Wang Z.H. Wang C.Y. Chen K.S. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells J. Power Sources 2001 94 40 50 10.1016/S0378-7753(00)00662-5
- Hu M. Gu A. Wang M. Zhu X. Yu L. Three dimensional, two phase flow mathematical model for PEM fuel cell: Parts I and II. Analysis and discussion of the internal transport mechanism Energy Convers. Manag. 2004 45 1861 1882 10.1016/j.enconman.2003.09.022
- Sauermoser M. Kizilova N. Pollet B. Kjelstrup S. Flow Field Patterns for Proton Exchange Membrane Fuel Cells Front. Energy Res. 2020 8 13 10.3389/fenrg.2020.00013
- Dai W. Wang H. Yuan X.-Z. Martin J.J. Yang D. Qiao J. Ma J. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells Int. J. Hydrogen Energy 2009 34 461 9478 10.1016/j.ijhydene.2009.09.017
- Liso L. Pagh M.N. Knudsen S.K. Mortensen H.H. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications Int. J. Hydrogen Energy 2014 39 8410 8420 10.1016/j.ijhydene.2014.03.175
- Wang C.Y. Fundamental models for fuel cell engineering Chem. Rev. 2004 104 4727 4765 10.1021/cr020718s
- Heidary H. Kermani M. Prasad A.A. Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells Int. J. Hydrogen Energy 2016 41 6885 6893 10.1016/j.ijhydene.2016.03.028
- Cheng T. Liu Q. Jiang G. Zhao Q. Mu D. The impact of baffle and taper channel tilt angle on the output performance of proton-exchange membrane fuel cells Fuel Cells 2024 24 32 48 10.1002/fuce.202300136
- Kizaki M. Asai H. Yumiya H. Toyota Fuel Cell System (TFCS) World Electr. Veh. J. 2015 7 85 92 10.3390/wevj7010085
- Hankins S.N. Zhou Y. Lohan D.J. Dede E.M. Generative design of large-scale fluid flow structures via steady-state diffusion-based dehomogenization Sci. Rep. 2023 13 14344 10.1038/s41598-023-41316-w
- Turing A.M. The chemical basis of morphogenesis Philos. Trans. R. Soc. B 1952 237 37 72
- Ebrahimi F. Kermani M.J. Generalization of the method of flow channel blocking in PEM fuel cells; extensions from straight-parallel to parallel-serpentine flow fields Int. J. Hydrogen Energy 2025, in press 10.1016/j.ijhydene.2025.01.470
- Zhang S. Xu H. Qu Z. Liu S. Talkhoncheh F.K. Bio-inspired flow channel designs for proton exchange membrane fuel cells: A review J. Power Source 2022 522 231003 10.1016/j.jpowsour.2022.231003
- Kang H.C. Jum K.M. Sohn Y.J. Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate Int. J. Hydrogen Energy 2019 44 24036 24042 10.1016/j.ijhydene.2019.07.120
- Cai G. Liang Y. Liu Z. Liu W. Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm Energy 2020 192 116670 10.1016/j.energy.2019.116670
- Yagiz M. Çelik S. Experimental investigation of bio-inspired flow field designs for direct methanol fuel cell Fuel 2025 381 133624 10.1016/j.fuel.2024.133624
- Tao J. Wang X. Xu M. Liu C. Ge J. Xing W. Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs) Indust. Chem. Mat. 2023 1 388 409 10.1039/D3IM00002H
- Kim J. Luo G. Wang C.-Y. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells J. Power Sources 2017 365 419 429 10.1016/j.jpowsour.2017.09.003
- Forchheimer Flow COMSOL Multiphysics 5.6, Library COMSOL Fluid Flow 5.6 Available online: https://doc.comsol.com/5.6/doc/com.comsol.help.models.ssf.forchheimer_flow/models.ssf.forchheimer_flow.pdf (accessed on 31 March 2025)
- Amiri A. Vafai K. Transient Analysis of Incompressible Flow Through a Packed Bed Int. J. Heat Mass Transfer 1998 41 4259 4279 10.1016/S0017-9310(98)00120-3
- Barbir F. Fuel Cell Operating Conditions PEM Fuel Cells 2nd ed. Barbir F. Academic Press Cambridge, MA, USA 2013 119 157
- Kadyk T. Kadow M. Hanke-Rauschenbach R. Experimental assessment and analysis of mass transport limiting current densities in PEM fuel cells Sci. Rep. 2025 15 12345
- Sheng W. Gasteiger H.A. Shao-Horn Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs. Alkaline Electrolytes J. Electrochem. Soc. 2010 157 B1529 B1536 10.1149/1.3483106
- Brandes B.A. Krishnan Y. Buchauer F.L. Hansen H.A. Hjelm J. Unifying the ORR and OER with surface oxygen and extracting their intrinsic activities on platinum Nat. Commun. 2024 15 7336 10.1038/s41467-024-51605-1
- Manso A.P. Marzo F.F. Barranco J. Garikano X. Mujika M.G. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review Int. J. Hydrogen Energy 2012 37 15256 15287 10.1016/j.ijhydene.2012.07.076
- Rocha C. Knöri T. Ribeirinha P. Gazdzicki P. A review on flow field design for proton exchange membrane fuel cells: Challenges to increase the active area for MW applications Renew. Sustain. Energy Rev. 2024 192 114198 10.1016/j.rser.2023.114198
- Paulino A.L.R. Robalinho E. Cunha E.F. Passos R.R. Santiago E.I. Current Distribution on PEM Fuel Cells with Different Flow Channel Patterns Proceedings of the COMSOL Conference in Boston Newton, MA, USA 9–11 October 2013
- Kandlikar S. Lu Z. Domigan W. White A. Benedict M. Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies Int. J. Heat Mass Transfer 2009 52 1741 1752 10.1016/j.ijheatmasstransfer.2008.09.025
- Chen H. Guo H. Ye F. Ma C.F. A numerical study of orientated-type flow channels with porous-blocked baffles of proton exchange membrane fuel cells Int. J. Hydrogen Energy 2021 46 29443 29458 10.1016/j.ijhydene.2020.12.178
- Ichihara N. Ueda M. 3D-print infill generation using the biological phase field of an optimized discrete material orientation vector field Compos. Part B Eng. 2022 232 109626 10.1016/j.compositesb.2022.109626
- Sinha P.K. Mukherjee P.P. Wang C.-Y. Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells J. Mat. Chem. Issue 2007 17 3089 3103 10.1039/b703485g
- de Bruijn F. Dam V. Janssen G. Review: Durability and Degradation Issues of PEM Fuel Cell Components Fuel Cells 2008 8 3 22 10.1002/fuce.200700053
- Sanchez D.G. Ruiu T. Biswas I. Friedrich A. Sanchez-Monreal J. Vera M. Effect of the Inlet Gas Humidification on PEMFC Behavior and Current Density Distribution Electrochem. Soc. 2014 64 603 617
- Yuan W.-W. Ou K. Jung S. Kim Y.-B. Analyzing and Modeling of Water Transport Phenomena in Open-Cathode Polymer Electrolyte Membrane Fuel Cell Appl. Sci. 2021 11 5964 10.3390/app11135964
- Kumar A. Reddy R.G. Effect of gas flow-field design in the bipolar/end plates on the steady and transient state performance of polymer electrolyte membrane fuel cell J. Power Sources 2006 155 264 271 10.1016/j.jpowsour.2005.05.006
- Bunyan S.T. Dhahad H.A. Khudhur D.S. Yusaf T. The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review Sustainability 2023 15 10389 10.3390/su151310389
Issue
| Energies, vol. 18, pp. 2165, 2025, Switzerland, https://doi.org/10.3390/en18092165 |
|