Autors: Todorov, T. T., Ivanov, T. T., Bankov B.
Title: A Multi-Step Approach for Constructing a Virtual Analysis Investigating Fluid Flow Behavior in Thermoplastic Resin Transfer Molding Technology and Accounting for Fiber Orientation After Molding of the Reinforcing Preform
Keywords:

Abstract: This research aims to provide a multi-step approach to create a virtual analysis to predict the influence of the fiber orientation created after the creation of a reinforcing fiber preform and how it affects the fluid flow in the injection molding process. The created methodology allows its use in technologies such as Resin Transfer Molding (RTM) and the relatively new Thermoplastic Resin Transfer Molding (T-RTM), through which it is possible to foresee potential problems when creating products with these technologies and to eliminate them at an early stage.

References

  1. Kanicki, D., 1994. Metalcasting’s versatility offer [sic] users a competitive edge. Casting World/Modern Casting, Guide to Selecting Casting Processes I.
  2. Holtzer, M., Kmita, A., 2020. Mold and Core Sands in Metalcasting: Chemistry and Ecology. Springer Cham, Switzerland.
  3. Lim X., 2020. The World Is Running Out of Elements, and Researchers Are Looking in Unlikely Places for Replacements. Discover.
  4. Wang,M.Y., Chang, R.Y., Hsu, Ch.H., 2018. Molding Simulation: Theory and Practice. Carl Hanser Verlag, München, Germany.
  5. Ageyeva, T., Sibikin, I., Kovacs, J., 2019. A review of Thermoplastic Resin Transfer Molding: Process Modeling and Simulation. Polymers 11. https://doi.org/10.3390/polym11101555
  6. Lee, J., Lim, J., Kim, M., 2019. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite. Polymers 10. https://doi.org/0.1002/pc.25445
  7. Todorov, G., Sofronov, Y., Romanov, B. New product development and production in extremely short terms - Safety goggles, 10th International Scientific Conference on Engineering, Technologies and Systems, TECHSYS 2021
  8. Sapuan, S., 2017. Composite Material: Concurrent Engineering Approach. Cambridge. Elsevier, Cambridge, United States.
  9. Zhan, Y., Lin, F., Song, Z., Sun, Z., Yu, M., 2021. Applications and research progress of optical fiber grating sensing in thermoplastic composites molding and structure health monitoring. Optik. https://doi.org/10.1016/j.ijleo.2020.166122
  10. Faruk, O., Tjong, J., Sain, M., 2017. Lightweight and Sustainable Materials for Automotive Applications. CRC Press, New York.
  11. Rosato. Don, Rosato, Dom., 2005. Reinforced Plastics Handbook. Elsevier, Massachusetts, USA.
  12. Murray, J., Robert, C., Gleich, K., McCarthy, E., Bradaigh, C., 2020. Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Materials and Design. https://doi.org/10.1016/j.matdes.2020.108512
  13. Song, Y., Gandhi, U., Sekito, T., Vaidya, U., Vallury, S., Yang, A., Osswald, T., 2018. CAE method for compression molding of carbon fiber-reinforced thermoplastic composite using bulk materials. Composites Part A: Applied Science and Manufacturing. https://doi.org/10.1016/j.compositesa.2018.09.002
  14. Deng, T., Huang, Z., Chen, L., Peng, X., Chen, C., Lu, X., Zhou, He., Zhou, Hu., 2022. Injection over-molding warpage prediction of continuous fiber-reinforced thermoplastic composites considering yarn reorientation. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2022.109804
  15. Gomez, C., Salvatori, D., Caglar, B., Trigueira, R., Orange, G., Michaud, V., 2021. Resin Transfer molding of High-Fluidity Polyamide-6 with modified Glass-Fabric preforms. Composites Part A: Applied Science and Manufacturing.
  16. Moldex3D, n.d. Integrating LS-DYNA Draping Analysis in Moldex3D for Better Fabric Insert Consideration [WWW Document]. Moldex3D R17 Help. URL http://support.moldex3d.com/r17/en/3-9-2_integratinglsdynadrapinganalysisinmoldex3dforbetterfabricinsertconsideration.html
  17. Livermore Software Technology Corporation, 2021b. LS-Dyna Keywork User’s Manual, Volume II, Material Models [WWW Document]. LS-DYNA Manual Volume II R13. URL https://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_Manual_Volume_II_R13_superceded.pdf
  18. Rajan, S.D., Mobasher, B. and all, 2014. Explicit Finite Element Modeling of Multylayer Composite Fabric for Gas Turbine Engine Containment System.
  19. Ivanov, Iv., Tabei, A., 2004. Loosely woven fabric model with viscoelastic crimped fibers for ballistic impact simulation. International Journal For Numerical Methods In Engineering 61, 1565-1583.
  20. Todorov, G., Kamberov, K., Vasilev, H. Design variants assessment of street LED device based on virtual prototyping. Case Studies in Thermal Engineering, 2021
  21. Livermore Software Technology Corporation, 2021a. LS-Dyna Keywork User’s Manual, Volume I, Material Models [WWW Document]. LS-DYNA Manual Volume I R13. URL https://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_Manual_Volume_I_R13.pdf
  22. Livermore Software Technology Corporation, n.d. Accuracy [WWW Document]. LS-Dyna Support. URL https://www.dynasupport.com/howtos/general/accuracy (accessed 7.18.20).

Issue

AIP Conference Proceedings, vol. 3274, 2025, Albania, https://doi.org/10.1063/5.0258831

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus