Autors: Tsenov, G. C., Kirilov, S. M., Mladenov, V. M.
Title: SPICE memristor model based on estimate from measured data
Keywords: Circuits and systems, Memristors, Modelling and simulation, Parameter model identification

Abstract: Purpose: The real production memristor devices produce a modeling challenge due to having a memristor variance and henceforth a measured difference between breadboard made circuits and LTSPICE or MATLAB simulated circuits with classical models, resulting in variances owed to difference in existing models and real hardware. When a new memristor is studied, usually no model is provided and it’s useful if there is a tool that automatically update models with production parameters. The purpose of this paper is to implement a procedure in MATLAB that takes measured data, approximates parameters and provides a MATLAB and LTSPICE models for precise representation of real memristor devices. Design/methodology/approach: The optimal values of production level memristor model’s coefficients can be estimated for various existing models by applying the measured voltage-current relationship and by using optimization procedure to match the coefficients to existing model. With graphical user interface (GUI) in MATLAB environment a user can select measured data and which model to be used as some are good for high frequency and others for low or mid frequency memristors. Findings: The analyses, which were performed in MATLAB and LTSPICE, validate the efficiency and accuracy of the proposed memristor model matching procedure. The analysis case utilizes a comparison with some very commonly used standard and modified memristor models. Originality/value: A GUI with optimization procedure for parameter estimation of real-world production memristors into simple memristor models or with parasitic parameters is applied in MATLAB and then transferred in LTSPICE with amplitude-frequency responses and voltage-current relations analyzed for different frequencies.

References

  1. Aggarwal, C. (2018), Neural Networks and Deep Learning, Springer International Publishing AG, ISBN 978-3-319-94463-0, p. 541, doi: 10.1007/978-3-031-29642-0.
  2. Ascoli, A., Tetzlaff, R., Biolek, Z., Kolka, Z., Biolkova, V. and Biolek, D. (2015), “The art of finding accurate memristor model solutions”, IEEE Journal on Emerging Select. Topics in Circ. Systems, Vol. 5 No. 2, pp. 133-142, doi: 10.1109/JETCAS.2015.2426493.
  3. Biolek, D., Biolek, Z., Kolka, Z., Biolková, V. and Kohl, Z. (2024), “Modeling and emulation of extended memristors: Two-Port approach revisited”, IEEE Trans. Circ. Syst. II, Express Briefs, doi: 10.1109/TCSII.2024.3471689.
  4. Campbell, K. (2017), “Self-directed channel memristor for high temperature operation”, Microelectronics Journal, Vol. 59, pp. 10-14, doi: 10.1016/j.mejo.2016.11.006.
  5. Campbell, K.A. (2019), “The self-directed channel memristor: operational dependence on the metal-chalcogenide layer”, Handbook of Memristor Networks, pp. 815-842, doi: 10.1007/978-3-319-76375-0_29.
  6. Carbajal, J.P., Dambre, J., Hermans, M. and Schrauwen, B. (2015), “Memristor models for machine learning”, Neural Computation, Vol. 27 No. 3, pp. 725-747, doi: 10.1162/NECO_a_00694.
  7. Dautovic, S., Samardzic, N., Juhas, A., Ascoli, A. and Tetzlaff, R. (2021), “Simscape and LTspice models of HP ideal generic memristor based on finite closed form solution for window functions”, 28th IEEE Int. Conf. ICECS, Dubai, pp. 1-6, doi: 10.1109/ICECS53924.2021.9665488
  8. James, A. (2019), “Memristors - Circuits and applications of memristor devices”, IntechOpen, p. 132, doi: 10.5772/intechopen.77562, ISBN 978-1-78984-073-5
  9. Joglekar, Y.N. and Wolf, S.J. (2009), “The elusive memristor: properties of basic electrical circuits”, European Journal of Physics, Vol. 30 No. 4, pp. 661-675, doi: 10.1088/0143-0807/30/4/001.
  10. Kharab, A. and Guenther, R. (2018), “An introduction to numerical methods: a MATLAB® approach”,CRC Press, ISBN 9781315107042, p. 631, doi: 10.1201/9781315107042.
  11. Kirilov, S. (2024), “A simple memristor model for memory devices”, 13th IEEE Int. Conf. MOCAST, pp. 1-4, doi: 10.1109/MOCAST61810.2024.10615437
  12. Kirilov, S. and Mladenov, V. (2024), “A simple LTSPICE memristor neuron with a modified transfer function”, 13th IEEE Int. Conf. MOCAST, pp. 1-4, doi: 10.1109/MOCAST61810.2024.10615915
  13. Krestinskaya, O., Salama, K.N. and James, A.P. (2019), “Learning in memristive neural network architectures using analog backpropagation circuits”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66 No. 2, pp. 719-732, doi: 10.1109/TCSI.2018.2866510.
  14. Lázaro, P.A., Gallo, I.J., Aranda, J.R., García, A.D.B., Juan, G.B. and Molinos, F.J. (2023), “design and simulation of memristor-based neural networks”, arXiv Preprint arXiv:2306, Vol. 11678, pp. 1-36.
  15. Lehtonen, E. and Laiho, M. (2010), “CNN using memristors for neighborhood connections”, 12th Conf, CNNA, Berkeley, pp. 1-4, doi: 10.1109/CNNA.2010.5430304.
  16. Ma, C., Xie, S., Jia, Y. and Lin, G. (2014), “Macromodeling of the memristor using piecewise volterra series”, Microelectronics Journal, Vol. 45 No. 3, pp. 325-329, doi: 10.1016/j.mejo.2013.11.017.ISSN 1879-2391
  17. Messaris, I., Ascoli, A., Demirkol, A.S., Ntinas, V., Prousalis, D. and Tetzlaff, R. (2024), “High frequency response of volatile memristors”, Advanced Electronic Materials, Vol. 10 No. 12, p. 1, doi: 10.1002/aelm.202400172.
  18. Mladenov, V. (2019), Advanced Memristor Modeling: memristor Circuits and Networks, ” MDPI, Switzerland, ISBN 978-3-03897-104-7, p. 184, doi: 10.3390/books978-3-03897-103-0.
  19. Mladenov, V. (2021), “A unified and open LTSPICE memristor model library”, Electronics, Vol. 10 No. 13, pp. 1-27, doi: 10.3390/electronics10131594.
  20. Mladenov, V. and Kirilov, S. (2022), “An improved model for metal Oxide-Based memristors and application in memory crossbars”, 18th Int. Conf. SMACD, IEEE, pp. 1-4, doi: 10.1109/SMACD55068.2022.9816355.
  21. Mladenov, V., Tsenov, G. and Kirilov, S. (2023), “LTSPICE memristor neuron with MOS transistor-based logarithmic-sigmoidal activation function” 18th Int. Conf. CNNA, IEEE, pp. 1-4, doi: 10.1109/CNNA60945.2023.10652671.
  22. Muthuswamy, B., Jevtic, J., Iu, H.H., Subramaniam, C.K., Ganesan, K., Sankaranarayanan, V., Sethupathi, K., Kim, H., Shah, M.P. and Chua, L.O. (2014), “Memristor modeling”, In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 490-493, doi: 10.1109/ISCAS.2014.6865179.
  23. Nugent, M.A. and Molter, T.W. (2014), “AHaH computing–from metastable switches to attractors to machine learning”, PLoS ONE, Vol. 9 No. 2, pp. 1-29, doi: 10.1371/journal.pone.0085175.
  24. Qingjiang, L., Khiat, A., Salaoru, I., Papavassiliou, C., Hui, X. and Prodromakis, T. (2014), “Memory impedance in TiO2based metal-insulator-metal devices”, Scientific Reports, Vol. 4 No. 1, pp. 1-6, doi: 10.1038/srep04522.
  25. Rak, Á. and Cserey, G. (2010), “Macromodeling of the memristor in SPICE”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 29 No. 4, pp. 632-636, doi: 10.1109/TCAD.2010.2042900.
  26. Sah, M.P., Yang, C., Kim, H., Muthuswamy, B., Jevtic, J. and Chua, L. (2015), “A generic model of memristors with parasitic components”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 62 No. 3, pp. 891-898, doi: 10.1109/TCSI.2014.2373674.
  27. Solovyeva, E. and Azarov, V. (2021), “Comparative analysis of memristor models with a window function described in LTspice”, IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), pp. 1097-1101, doi: 10.1109/ElConRus51938.2021.9396217
  28. Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S. (2008), “The missing memristor found”, Nature, Vol. 453 No. 7191, pp. 80-83, doi: 10.1038/nature06932.
  29. Wang, S., Song, L., Chen, W., Wang, G., Hao, E., Li, C., Hu, Y., Pan, Y., Nathan, A., Hu, G. and Gao, S. (2023), “Memristor‐based intelligent human‐like neural computing”, Advanced Electronic Materials, Vol. 9 No. 1, pp. 1-39, doi: 10.1002/aelm.202200877.
  30. Xiao, Y., Jiang, B., Zhang, Z., Ke, S., Jin, Y., Wen, X. and Ye, C. (2023), “A review of memristor: material and structure design, device performance, applications and prospects”, Science and Technology of Advanced Materials, Vol. 24 No. 1, pp. 1-24.
  31. Xu, W., Wang, J. and Yan, X. (2021), “Advances in memristor-based neural networks”, Frontiers in Nanotechnology, Vol. 3, pp. 1-14, doi: 10.3389/fnano.2021.645995.
  32. Yang, Y. and Lee, S. (2008), “Circuit systems with MATLAB and PSpice”, John Wiley and Sons, pp. 539. ISBN 978-04-7082-240-1
  33. Zafar, M., Awais, M. and Shehzad, M. (2022), “Computationally efficient memristor model based on Hann window function”, Microelectronics Journal, Vol. 125, pp. 1-12, doi: 10.1016/j.mejo.2022.105476.

Issue

COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, pp. 1-10, 2025, United Kingdom, https://doi.org/10.1108/COMPEL-11-2024-0492

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science