Autors: Furnadzhiev, R. S., Shopov, M. P., Kakanakov, N. R.
Title: Efficient Orchestration of Distributed Workloads in Multi-Region Kubernetes Cluster
Keywords: cloud computing, Kubernetes, multi-region, orchestration

Abstract: Distributed Kubernetes clusters provide robust solutions for geo-redundancy and fault tolerance in modern cloud architectures. However, default scheduling mechanisms primarily optimize for resource availability, often neglecting network topology, inter-node latency, and global resource efficiency, leading to suboptimal task placement in multi-region deployments. This paper proposes network-aware scheduling plugins that integrate heuristic, metaheuristic, and linear programming methods to optimize resource utilization and inter-zone communication latency for containerized workloads, particularly Apache Spark batch-processing tasks. Unlike the default scheduler, the presented approach incorporates inter-node latency constraints and prioritizes locality-aware scheduling, ensuring efficient pod distribution while minimizing network overhead. The proposed plugins are evaluated using the kube-scheduler-simulator, a tool that replicates Kubernetes scheduling behavior without deploying real workloads. Experiments cover multiple cluster configurations, varying in node count, region count, and inter-region latencies, with performance metrics recorded for scheduler efficiency, inter-zone communication impact, and execution time across different optimization algorithms. The obtained results indicate that network-aware scheduling approaches significantly improve latency-aware placement decisions, achieving lower inter-region communication delays while maintaining resource efficiency.

References

  1. Rao G. Stone H.S. Hu T.C. Assignment of Tasks in a Distributed Processor System with Limited Memory IEEE Trans. Comput. 1979 30 291 299 10.1109/TC.1979.1675348
  2. Abdul-Rahman O. Aida K. Towards Understanding the Usage Behavior of Google Cloud Users: The Mice and Elephants Phenomenon Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science Singapore 15–18 December 2014 272 277
  3. Centofanti C. Tiberti W. Marotta A. Graziosi F. Cassioli D. Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge Proceedings of the 2023 IEEE 9th International Conference on Network Softwarization (NetSoft) Madrid, Spain 19–23 June 2023 426 431
  4. Santos J. Wauters T. Volckaert B. Turck F.D. Towards Network-Aware Resource Provisioning in Kubernetes for Fog Computing Applications Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft) Paris, France 24–28 June 2019 351 359
  5. Pusztai T.W. Rossi F. Dustdar S. Pogonip: Scheduling Asynchronous Applications on the Edge Proceedings of the 2021 IEEE 14th International Conference on Cloud Computing (CLOUD) Chicago, IL, USA 5–10 September 2021 660 670
  6. Zhang X. Li L. Wang Y. Chen E. Shou L. Zhang X. Zeus: Improving Resource Efficiency via Workload Colocation for Massive Kubernetes Clusters IEEE Access 2021 9 105192 105204 10.1109/ACCESS.2021.3100082
  7. Lin M. Xi J. Bai W. Wu J. Ant Colony Algorithm for Multi-Objective Optimization of Container-Based Microservice Scheduling in Cloud IEEE Access 2019 7 83088 83100 10.1109/ACCESS.2019.2924414
  8. Carrión C. Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges ACM Comput. Surv. 2022 55 138 10.1145/3539606
  9. Zhang W.-G. Ma X.-L. Zhang J.-Z. Research on Kubernetes’ Resource Scheduling Scheme Proceedings of the 8th International Conference on Communication and Network Security Qingdao, China 2–4 November 2018
  10. Senjab K. Abbas S. Ahmed N. Khan A.u.R. A survey of Kubernetes scheduling algorithms J. Cloud Comput. 2023 12 87
  11. Rejiba Z. Chamanara J. Custom Scheduling in Kubernetes: A Survey on Common Problems and Solution Approaches ACM Comput. Surv. 2022 55 151
  12. Sharma S. Kumar V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future Arch. Comput. Methods Eng. 2022 29 5605 5633 10.1007/s11831-022-09778-9
  13. Bianchi L. Dorigo M. Gambardella L.M. Gutjahr W.J. A survey on metaheuristics for stochastic combinatorial optimization Nat. Comput. 2009 8 239 287 10.1007/s11047-008-9098-4
  14. Liu X. Liu J. A Task Scheduling Based on Simulated Annealing Algorithm in Cloud Computing Int. J. Hybrid Inf. Technol. 2016 9 403 412 10.14257/ijhit.2016.9.6.36
  15. Feller E. Rilling L. Morin C. Energy-Aware Ant Colony Based Workload Placement in Clouds Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing Lyon, France 21–23 September 2011 26 33
  16. Guerrero C. Lera I. Juiz C. Genetic Algorithm for Multi-Objective Optimization of Container Allocation in Cloud Architecture J. Grid Comput. 2017 16 113 135
  17. Zhang D. Yan B. Feng Z. Zhang C. Wang Y.-X. Container oriented job scheduling using linear programming model Proceedings of the 2017 3rd International Conference on Information Management (ICIM) Chengdu, China 21–23 April 2017 174 180
  18. Rodrigues L.R. Pasin M. Alves O.C. Miers C.C. Pillon M.A. Felber P. Koslovski G.P. Network-Aware Container Scheduling in Multi-Tenant Data Center Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM) Waikoloa, HI, USA 9–13 December 2019 1 6
  19. Huang W. Zhou J. Zhang D. On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes Sensors 2021 21 2971 10.3390/s21092971 33922709
  20. Kubernetes-Sigs/Scheduler-Plugins: Repository for Out-of-Tree Scheduler Plugins Based on Scheduler Framework Available online: https://github.com/kubernetes-sigs/scheduler-plugins (accessed on 20 January 2025)
  21. Scheduling Framework|Kubernetes Available online: https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/ (accessed on 20 January 2025)
  22. kubernetes-Sigs/Kube-Scheduler-Simulator: The Simulator for the Kubernetes Scheduler Available online: https://github.com/kubernetes-sigs/kube-scheduler-simulator/ (accessed on 20 January 2025)
  23. kubernetes-Sigs/Kwok: Kubernetes Without Kubelet—Simulates Thousands of Nodes and Clusters Available online: https://github.com/kubernetes-sigs/kwok (accessed on 20 January 2025)

Issue

Computers, vol. 14, pp. 114, 2025, Switzerland, https://doi.org/10.3390/computers14040114

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science