Autors: Boycheva, S. V., Mladenov, B. M., Borissova, A. B., Dimitrov M., Trendafilova I., Kovacheva D., Popova M. Title: Carbon Capture Adsorbents Based on Ash Residues from the Combustion of Coal with Biomass Blended Fuels Keywords: adsorbents, ash utilization, carbon capture, coal with biomass blended fuelAbstract: One of the approaches to limit the negative impact on the environment from the burning of coal in the production of heat and electricity is to limit their use by blending them with biomass. Blended fuel combustion leads to the generation of a solid ash residue differing in composition from coal ash, and opportunities for its utilization have not yet been studied. The present paper provides results on the carbon capture potential of adsorbents developed through the alkaline conversion of ash mixtures from the combustion of lignite and biomass from agricultural plants and wood. The raw materials and the obtained adsorbents were studied with respect to the following: their chemical and phase composition based on Atomic Absorption Spectroscopy with Inductively Coupled Plasma (AAS-ICP) and X-ray powder diffraction (XRD), respectively, morphology based on scanning electron spectroscopy (SEM), thermal properties based on thermal analysis (TG and DTG), surface parameters based on N2 physisorption, and the type of metal oxides within the adsorbents based on temperature-programmed reduction (TPR) and UV-VIS spectroscopy. The adsorption capacity toward CO2 was studied in dynamic conditions and the obtained results were compared to those of zeolite-like CO2 adsorbents developed through the utilization of the raw coal ash. It was observed that the adsorbents based on ash of blended fuel have a comparable carbon capture potential with coal fly ash zeolites despite their lower specific surface areas due to their compositional specifics and that they could be successfully applied as adsorbents in post-combustion carbon capture systems. References - Ali F. Dawood A. Hussain A. Alnasir M.H. Khan M.A. Butt T.M. Janjua N.K. Hamid A. Fueling the future: Biomass applications for green and sustainable energy Discov. Sustain. 2024 5 156 10.1007/s43621-024-00309-z
- Sher F. Hameed S. Smječanin Omerbegović N. Chupin A. Ul Hai I. Wang B. Heng Teoh Y. Joka Yildiz M. Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions Energy Convers. Manag. 2025 323 119213 10.1016/j.enconman.2024.119213
- Tokimatsu K. Yasuoka R. Nishio M. Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use Appl. Energy 2017 185 1899 1906 10.1016/j.apenergy.2015.11.077
- Mandø M. 4–Direct combustion of biomass Biomass Combustion Science, Technology and Engineering Woodhead Publishing Series in Energy Woodhead Publ. Cambridge, UK 2013 61 83 10.1533/9780857097439.2.61
- Awasthi A. Bhaskar T. Chapter 11–Combustion of Lignocellulosic Biomass Biomass, Biofuels, Biochemicals, Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels 2nd ed. Pandey A. Larroche C. Dussap C.-G. Gnansounou E. Khanal S.K. Academic Press Cambridge, MA, USA 2019 267 284 10.1016/B978-0-12-816856-1.00011-7
- Kanan S. Samara F. Dioxins and furans: A review from chemical and environmental perspectives Trends Environ. Anal. Chem. 2018 17 1 13 10.1016/j.teac.2017.12.001
- Tao J. Hou L. Li J. Yan B. Chen G. Cheng Z. Lin F. Ma W. Crittenden J.C. Biomass combustion: Environmental impact of various precombustion processes J. Clean. Prod. 2020 261 121217 10.1016/j.jclepro.2020.121217
- Sahu S.G. Chakraborty N. Sarkar P. Coal–biomass co-combustion: An overview Renew. Sustain. Energy Rev. 2014 39 575 586 10.1016/j.rser.2014.07.106
- Munawar M.A. Khoja A.H. Naqvi S.R. Mehran M.T. Hassan M. Liaquat R. Dawood U.F. Challenges and opportunities in biomass ash management and its utilization in novel applications Renew. Sustain. Energy Rev. 2021 150 111451 10.1016/j.rser.2021.111451
- Trivedi K. Sharma A. Kanabar B.K. Arunachalam K.D. Gautam S. Comparative Analysis of Coal and Biomass for Sustainable Energy Production: Elemental Composition, Combustion Behavior and Co-Firing Potential Water Air Soil Pollut. 2024 235 698 10.1007/s11270-024-07509-3
- Wang R. Chang S. Cui X. Li J. Ma L. Kumar A. Nie Y. Cai W. Retrofitting coal-fired power plants with biomass co-firing and carbon capture and storage for net zero carbon emission: A plant-by-plant assessment framework GCB Bioenergy 2021 13 143 160 10.1111/gcbb.12756
- Vassilev S.V. Vassileva C.G. Vassilev V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview Fuel 2015 158 330 350 10.1016/j.fuel.2015.05.050
- Vassilev S.V. Baxter D. Andersen L.K. Vassileva C.G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification Fuel 2013 105 40 76 10.1016/j.fuel.2012.09.041
- Alterary S.S. Marei N.H. Fly ash properties, characterization, and applications: A review J. King Saud Univ. Sci. 2021 33 101536 10.1016/j.jksus.2021.101536
- ASTM C0618-23e1 Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete ASTM West Conshohocken, PA, USA 2023 10.1520/C0618-23
- Kuźnia M. A Review of Coal Fly Ash Utilization: Environmental, Energy, and Material Assessment Energies 2025 18 52 10.3390/en18010052
- Vassilev S.V. Menendez R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 4. Characterization of heavy concentrates and improved fly ash residues Fuel 2005 84 973 991 10.1016/j.fuel.2004.11.021
- Ibáñez J. Font O. Moreno N. Elvira J.J. Alvarez S. Querol X. Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes Fuel 2013 105 314 317 10.1016/j.fuel.2012.06.090
- Yan K. Guo Y. Ma Z. Zhao Z. Cheng F. Quantitative analysis of crystalline and amorphous phases in pulverized coal fly ash based on the Rietveld method J. Non. Cryst. Solids 2018 483 37 42 10.1016/j.jnoncrysol.2017.12.043
- Zhai J. Burke I.T. Mayes W.M. Stewart D.I. New insights into biomass combustion ash categorisation: A phylogenetic analysis Fuel 2021 287 119469 10.1016/j.fuel.2020.119469
- Zhang X. Li C. Zheng S. Di Y. Sun Z. A review of the synthesis and application of zeolites from coal-based solid wastes Int. J. Miner. Metall. Mater. 2022 29 1 21 10.1007/s12613-021-2256-8
- Koshlak H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals Materials 2023 16 4837 10.3390/ma16134837
- Thomas B.S. Dimitriadis P. Kundu C. Vuppaladadiyam S.S.V. Raman R.K.S. Bhattacharya S. Extraction and separation of rare earth elements from coal and coal fly ash: A review on fundamental understanding and on-going engineering advancements J. Environ. Chem. Eng. 2024 12 112769 10.1016/j.jece.2024.112769
- Szerement J. Szatanik-Kloc A. Jarosz R. Bajda T. Mierzwa-Hersztek M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection J. Clean. Prod. 2021 311 127461 10.1016/j.jclepro.2021.127461
- Boycheva S. Szegedi Á. Lázár K. Popov C. Popova M. Advanced high-iron coal fly ash zeolites for low-carbon emission catalytic combustion of VOCs Catal. Today 2023 418 114109 10.1016/j.cattod.2023.114109
- Liang Z. Liu Z. Yu L. Wang W. Fly ash-based zeolites: From waste to value—A comprehensive overview of synthesis, properties, and applications Chem. Eng. Res. Des. 2024 212 240 260 10.1016/j.cherd.2024.10.031
- Boycheva S. Zgureva D. Lazarova H. Popova M. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na–Ca-X Chemosphere 2021 271 129505 10.1016/j.chemosphere.2020.129505
- Zhao Z. Zhang Y. Othman R.M. Ha W. Wang J. Wang T. Zhong L. Wang J. Pan W.-P. CO2adsorption by coal fly ash zeolite and modified zeolite-templated carbon Process Saf. Environ. Prot. 2024 186 151 165 10.1016/j.psep.2024.03.103
- Assad Munawar M. Hussain Khoja A. Hassan M. Liaquat R. Raza Naqvi S. Taqi Mehran M. Abdullah A. Saleem F. Biomass ash characterization, fusion analysis and its application in catalytic decomposition of methane Fuel 2021 285 119107 10.1016/j.fuel.2020.119107
- Adesanya E. Perumal P. Luukkonen T. Yliniemi J. Ohenoja K. Kinnunen P. Illikainen M. Opportunities to improve sustainability of alkali-activated materials: A review of side-stream based activators J. Clean. Prod. 2021 286 125558 10.1016/j.jclepro.2020.125558
- Li S. Yuan X. Deng S. Zhao L. Lee K.B. A review on biomass-derived CO2adsorption capture: Adsorbent, adsorber, adsorption, and advice Renew. Sustain. Energy Rev. 2021 152 111708 10.1016/j.rser.2021.111708
- Vassilev S.V. Vassileva C.G. Extra CO2capture and storage by carbonation of biomass ashes Energy Convers. Manag. 2020 204 112331 10.1016/j.enconman.2019.112331
- Hills C.D. Tripathi N. Singh R.S. Carey P.J. Lowry F. Valorisation of agricultural biomass-ash with CO2Sci. Rep. 2020 10 13801 10.1038/s41598-020-70504-1
- Kalvachev Y. Zgureva D. Boycheva S. Barbov B. Petrova N. Synthesis of carbon dioxide adsorbents by zeolitization of fly ash J. Therm. Anal. Calorim. 2016 124 101 106 10.1007/s10973-015-5148-1
- Boycheva S. Chakarova K. Mihaylov M. Hadjiivanov K. Popova M. Effect of calcium on enhanced carbon capture potential of coal fly ash zeolites. Part II: A study on the adsorption mechanisms Environ. Sci. Process. Impacts 2022 24 1934 1944 10.1039/D2EM00252C 36172795
- CAN/CSA A3001-18 Cementitious Materials Compendium CSA Group Toronto, ON, Canada 2003 978-1-4883-1323-3
- Wattimena O.K. Antoni Hardjito D. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer AIP Conf. Proc. 2017 1887 20041 10.1063/1.5003524
- Bahmanzadegan F. Ghaemi A. Modification and functionalization of zeolites to improve the efficiency of CO2adsorption: A review Case Stud. Chem. Environ. Eng. 2024 9 100564 10.1016/j.cscee.2023.100564
- Xiang X. Guo T. Yin Y. Gao Z. Wang Y. Wang R. An M. Guo Q. Hu X. High Adsorption Capacity Fe@13X Zeolite for Direct Air CO2Capture Ind. Eng. Chem. Res. 2023 62 5420 5429 10.1021/acs.iecr.2c04458
- Harris N. Hover K.C. Folliard K. Ley M. Variables Affecting the ASTM Standard C 311 Loss on Ignition Test for Fly Ash J. Astm Int. 2006 3 JAI100286 10.1520/JAI100286
- Catalfamo P. Di Pasquale S. Corigliano F. Mavilia L. Influence of the calcium content on the coal fly ash features in some innovative applications Resour. Conserv. Recycl. 1997 20 119 125 10.1016/S0921-3449(97)00013-X
- Makgabutlane B. Maubane-Nkadimeng M.S. Coville N.J. Mhlanga S.D. Plastic-fly ash waste composites reinforced with carbon nanotubes for sustainable building and construction applications: A review Results Chem. 2022 4 100405 10.1016/j.rechem.2022.100405
- Sokol E.V. Kalugin V.M. Nigmatulina E.N. Volkova N.I. Frenkel A.E. Maksimova N.V. Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions Fuel 2002 81 867 876 10.1016/S0016-2361(02)00005-4
- Shao P. Hou H. Wang W. Wang W. Geochemistry and mineralogy of fly ash from the high-alumina coal, Datong Coalfield, Shanxi, China Ore Geol. Rev. 2023 158 105476 10.1016/j.oregeorev.2023.105476
- Zhang J. Tang X. Yi H. Yu Q. Zhang Y. Wei J. Yuan Y. Synthesis, characterization and application of Fe-zeolite: A review Appl. Cat. A General 2022 630 118467
- Zi G. Dake T. Ruiming Z. Hydrothermal crystallization of zeolite Y from Na2O-Fe2O3-Al2O3-SiO2-H2O system Zeolites 1988 8 453 457
- Murrieta-Rico F.N. Antúnez-García J. Yocupicio-Gaxiola R.I. Zamora J. Serrato A.R. Petranovskii V. One-Pot Synthesis of Iron-Modified Zeolite X and Characterization of the Obtained Materials Catalysts 2023 13 1159 10.3390/catal13081159
- Khatamian M. Yavari A. Akbarzadeh A. Oskoui M.S. A study on the synthesis of [Fe,B]-MFI zeolites using hydrothermal method and investigation of their properties J. Mol. Liq. 2017 242 979 986
- Mallette A.J. Reiser J.T. Mpourmpakis G. Motkuri R.K. Neeway J.J. Rimer J.D. The effect of metals on zeolite crystallization kinetics with relevance to nuclear waste glass corrosion npj Mater. Degrad. 2023 7 4
- Thommes M. Kaneko K. Neimark A.V. Olivier J.P. Rodriguez-Reinoso F. Rouquerol J. Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015 87 1051 1069 10.1515/pac-2014-1117
- Guo J. Wu H. Wei Y. Miao Y. Qu J. Wang P. Synthesis of a high-iron fly-ash-based Na-X molecular sieve and its application in the adsorption of low concentration of CO2RSC Adv. 2024 14 1686 1696 10.1039/D3RA07615F
- Somanathan T. Mohana Krishna Vemula D. Velautham D.-S. Kumar R. Kumar R. MgO Nanoparticles for Effective Uptake and Release of Doxorubicin Drug: pH Sensitive Controlled Drug Release J. Nanosci. Nanotechnol. 2016 16 9421 9431 10.1166/jnn.2016.12164
- Verziu M. Coman S.M. Richards R. Parvulescu V.I. Transesterification of vegetable oils over CaO catalysts Catal. Today 2011 167 64 70 10.1016/j.cattod.2010.12.031
- Spoto G. Gribov E.N. Ricchiardi G. Damin A. Scarano D. Bordiga S. Lamberti C. Zecchina A. Carbon monoxide MgO from dispersed solids to single crystals: A review and new advances Prog. Surf. Sci. 2004 76 71 146 10.1016/j.progsurf.2004.05.014
- Li W. Li G. Jin C. Liu X. Wang J. One-step synthesis of nanorod-aggregated functional hierarchical iron-containing MFI zeolite microspheres J. Mater. Chem. A 2015 3 14786 14793 10.1039/C5TA02662H
- Xia H. Sun K. Sun K. Feng Z. Li W. Li C. Direct Spectroscopic Observation of Fe(III)-Phenolate Complex Formed From the Reaction of Benzene With Peroxide Species on Fe/ZSM-5 At Room Temperature J. Phys. Chem. C 2008 112 9001 9005 Available online: https://api.semanticscholar.org/CorpusID:40558723 (accessed on 10 March 2025)
- Bordiga S. Buzzoni R. Geobaldo F. Lamberti C. Giamello E. Zec- China A. Leofanti G. Petrini G. Tozzola G. Vlaic G. Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods J. Catal. 1996 158 486 10.1006/jcat.1996.0048
Issue
| Energies, vol. 18, pp. 1846, 2025, Switzerland, https://doi.org/10.3390/en18071846 |
|